精英家教网 > 初中数学 > 题目详情

【题目】如图,∠BOC=60°,点ABO延长线上的一点,OA=10cm,动点P从点A出发沿AB2cm/s的速度移动,动点Q从点O出发沿OC1cm/s的速度移动,如果点PQ同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.

【答案】10

【解析】

根据△POQ是等腰三角形,分两种情况进行讨论:点PAO上,点PBO上,分别计算,即可得解.

PO=QO时,△POQ是等腰三角形,如图1所示

当点PAO上时,

PO=AO-AP=10-2tOQ=t

PO=QO时,

解得

PO=QO时,△POQ是等腰三角形,如图2所示

当点PBO上时

PO=AP-AO=2t-10OQ=t

PO=QO时,

解得

故答案为:10

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,活动课上,小玥想要利用所学的数学知识测量某个建筑地所在山坡AE的高度,她先在山脚下的点E处测得山顶A的仰角是30°,然后,她沿着坡度i=1:1的斜坡按速度20/分步行15分钟到达C处,此时,测得点A的俯角是15°.图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上,求出建筑地所在山坡AE的高度AB.(精确到0.1米,参考数据:≈1.41).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种型号汽车油箱容量为40升,每行驶100千米耗油10.设一辆加满油的该型号汽车行驶路程为x(千米),行驶过程中油箱内剩余油量为y().

(1)yx之间的函数表达式;

(2)该辆汽车以80千米/时的速度从甲地出发开往距离甲地1050千米的B地,为了有效延长汽车使用寿命,厂家建议每次加油时,油箱内剩余油量不低于油箱容量的,按此建议,求该辆汽车最多行驶多长时间就需再一次加油?此次加油后,剩余路程至少还需再加几次油?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).

(1)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;

(2)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.试求点M(2,1)到直线y=x+2的直角距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=ACAD=DE,∠BAD18°,∠EDC12°,则∠DAE的度数是(  )

A.52°B.58°C.60°D.62°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在等腰△ABC中,AB=AC=,BC=4,点DA出发以每秒个单位的速度向点B运动,同时点E从点B出发以每秒4个单位的速度向点C运动,在DE的右侧作∠DEF=∠B,交直线AC于点F,设运动的时间为t秒,则当△ADF是一个以AD为腰的等腰三角形时,t的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】上午8时,一条船从海岛A出发,以15n mile/h(海里/时,1n mile1852m)的速度向正北航行,10时到达海岛B处,从AB望灯塔C,测得NAC42°NBC84°.则从海岛B到灯塔C的距离为(  )

A.45n mileB.30n mileC.20n mileD.15n mile

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道对称补缺的思想是解决与轴对称图形有关的问题的一种重要的添加辅助线的策略,参考这种思想解决下列问题.

ABC中,DABC外一点.

(1)如图1,若AC平分∠BAD,CEAB于点E,∠ B+ADC=180,求证:BC=CD;

(2)如图2,若∠ACB=90°, AC=BCFAC上一点,ADBFBF延长线于点D,且BF是∠CBA的角平分线.求证:2AD=BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】

在如图所示的方格纸中,ABC的顶点都在小正方形的顶点上,以小正方形互相垂直的两边所在直线建立直角坐标系.

1)作出ABC关于y轴对称的A1B1C1,其中ABC分别和A1B1C1对应;

2)平移ABC,使得A点在x轴上,B点在y轴上,平移后的三角形记为A2B2C2,作出平移后的A2B2C2,其中ABC分别和A2B2C2对应;

3)填空:在(2)中,设原ABC的外心为MA2B2C2的外心为M,则MM2之间的距离为 .

查看答案和解析>>

同步练习册答案