【题目】我们知道“对称补缺”的思想是解决与轴对称图形有关的问题的一种重要的添加辅助线的策略,参考这种思想解决下列问题.
在△ABC中,D为△ABC外一点.
(1)如图1,若AC平分∠BAD,CE⊥AB于点E,∠ B+∠ADC=180,求证:BC=CD;
(2)如图2,若∠ACB=90°, AC=BC,F是AC上一点,AD⊥BF交BF延长线于点D,且BF是∠CBA的角平分线.求证:2AD=BF.
【答案】(1)见解析;(2)见解析.
【解析】
(1)在AB上取点G,使AG=AD,证明△ADC≌△AGC得DC=GC ,∠CDA=∠CGA, 可证∠B=∠CGE得到CB = CG,从而得到结论;
(2)分别延长AD、BC交于点H,证明△ADB≌△BDH,得∠DAB=∠DHB,AB=BH ,所以△ABH为等腰三角形,证得2AD=AH,再证明BF= AH即可得证.
(1) 证明:在AB上取点G,使AG=AD
∵AC平分∠BAD
∠DAC=∠GAC,
在△ADC与△AGC中
AD=BD,
∠DAC=∠GAC,
AC=AC(公共边)
△ADC≌△AGC (SAS)
DC=GC
∠CDA=∠CGA,
又∵∠ B+∠ADC=180,∠ CGE+∠AGC=180,
∠ B =∠ CGE
CB = CG
又∵DC=GC
CB=DC
(2) 证明:分别延长AD、BC交于点H,
∵BD平分∠CBA
∠DBC=∠ABD,
∵AD⊥BF交BF延长线于点D
∠ADB=∠HDB=90°,
在△ADB与△BDH 中
∠ADB=∠HDB
BD=BD
∠DBC=∠ABD,
△ADB≌△BDH
∠DAB=∠DHB,AB=BH
△ABH为等腰三角形
又∵BD平分∠CBA
AD=DH,即2AD=AH
∵∠ACB=90°, AC=BC,
∠B=∠CAB=45°,
∠DAB=(180° - ∠B )=90°-22.5°=67.5,
∠HAC=22.5°=∠CBD
在△ACH与△BCF 中
∠HAC=∠DBC
AC=CB
∠ACH=∠BDA
△ACH≌△BCF
BF= AH
又∵2AD=AH,
2AD=BF
科目:初中数学 来源: 题型:
【题目】随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为 2000 元,1700 元的A,B两种型号的净水器,下表是近两周的销售情况:
(1)求A,B两种型号的净水器的销售单价;
(2)若电器公司准备用不多于 54000 元的金额采购这两种型号的净水器共 30 台,求 A种型号的净水器最多能采购多少台?
(3)在(2)的条件下,公司销售完这 30 台净水器能否实现利润超过12800 元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x<0)的图象经过AO的中点C,交AB于点D.若点D的坐标为(﹣4,n),且AD=3.
(1)求反比例函数y=的表达式;
(2)求经过C、D两点的直线所对应的函数解析式;
(3)设点E是线段CD上的动点(不与点C、D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+(3m+1)x﹣m(m>且为实数)与x轴分别交于点A、B(点B位于点A的右侧且AB≠OA),与y轴交于点C.
(1)填空:点B的坐标为 ,点C的坐标为 (用含m的代数式表示);
(2)当m=3时,在直线BC上方的抛物线上有一点M,过M作x轴的垂线交直线BC于点N,求线段MN的最大值;
(3)在第四象限内是否存在点P,使得△PCO,△POA和△PAB中的任意两三角形都相似(全等是相似的特殊情况)?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△ADE均为等腰直角三角形,连接BE,点F、G分别为AD、AC的中点,连接FG.在△ADE绕A旋转的过程中,当B、D、E三点共线时,AB=,AD=1,则线段FG的长为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们已经知道,形如的无理数的化简要借助平方差公式:
例如:。
下面我们来看看完全平方公式在无理数化简中的作用。
问题提出:该如何化简?
建立模型:形如的化简,只要我们找到两个数,使,这样,,那么便有:,
问题解决:化简,
解:首先把化为,这里,,由于4+3=7,,
即(,,
∴
模型应用1:
利用上述解决问题的方法化简下列各式:
(1);(2);
模型应用2:
(3)在中,,,,那么边的长为多少?(结果化成最简)。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,是内的一点.
(1)如图,平分交于点,点在线段上(点不与点、重合),且,求证:.
(2)如图,若是等边三角形,,,以为边作等边,连.当是等腰三角形时,试求出的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.OD⊥AB,OE⊥AC.
(1)求证:OD=OE.
(2)若O为MN的中点,判断△ABC的形状,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com