【题目】阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。
解决问题:如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.
(1)使∠APB=30°的点P有_______个;
(2)若点P在y轴正半轴上,且∠APB=30°,求满足条件的点P的坐标;
(3)设sin∠APB=m,若点P在y轴上移动时, 满足条件的点P有4个,求m的取值范围.
【答案】(1)无数;(2)(0, )或(0, );(3)0﹤m﹤.
【解析】试题分析:(1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个.
(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标.
(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,由此即可求出m的范围.
试题解析:解:(1)以AB为边,在第一象限内作等边三角形ABC,以点C为圆心,AC为半径作⊙C,交y轴于点P1、P2.
在优弧AP1B上任取一点P,如图1,则∠APB=∠ACB=×60°=30°,∴使∠APB=30°的点P有无数个.
故答案为:无数.
(2)点P在y轴的正半轴上,过点C作CG⊥AB,垂足为G,如图1.
∵点A(1,0),点B(5,0),∴OA=1,OB=5,∴AB=4.
∵点C为圆心,CG⊥AB,∴AG=BG=AB=2,∴OG=OA+AG=3.
∵△ABC是等边三角形,∴AC=BC=AB=4,∴CG=
=
=2,∴点C的坐标为(3,2).
过点C作CD⊥y轴,垂足为D,连接CP2,如图1.∵点C的坐标为(3,2),∴CD=3,OD=2.
∵P1、P2是⊙C与y轴的交点,∴∠AP1B=∠AP2B=30°.
∵CP2=CA=4,CD=3,∴DP2==.
∵点C为圆心,CD⊥P1P2,∴P1D=P2D=,∴P1(0,2+),P2(0,2﹣).
(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.
理由:可证:∠APB=∠AEH,当∠APB最大时,∠AEH最大.由sin∠AEH= 得:当AE最小即PE最小时,∠AEH最大.所以当圆与y轴相切时,∠APB最大.∵∠APB为锐角,∴sin∠APB随∠APB增大而增大,.
连接EA,作EH⊥x轴,垂足为H,如图2.∵⊙E与y轴相切于点P,∴PE⊥OP.
∵EH⊥AB,OP⊥OH,∴∠EPO=∠POH=∠EHO=90°,∴四边形OPEH是矩形,∴OP=EH,PE=OH=3,∴EA=3.sin∠APB=sin∠AEH=,∴m的取值范围是.
科目:初中数学 来源: 题型:
【题目】已知,如图,四边形ABCD是边长为2的菱形,E、F分别是AB、AD的中点,连EF,将△FAE绕点F旋转180°得△FDM.
(1)求证:EF⊥AC.
(2)若∠B=60°,求以E、M、C为顶点的三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,梯形AOBC的顶点A,C在反比例函数图象上,OA∥BC,上底边OA在直线y=x上,下底边BC交y轴于B(0,﹣4),则四边形AOBC的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择,为了估计全校学生对这四个活动项日的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:
(1)求参加这次调查的学生人数,并补全条形统计图;
(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;
(3)若该校共有1600名学生,试估计该校选择“足球”项目的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连结AF.
(1)判断AF与⊙O的位置关系并说明理由;
(2)若AC=24,AF=15,求sinB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】成语“运筹帷幄”中“筹”的原意是指《孙子算经》中记载的“算筹”.算筹是中国古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵、横两种形式(如图).
当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的算筹需要纵、横相间:个位,百位,万位数用纵式表示;十位,千位,十万位数用横式表示:“0”用空位来代替,以此类推,如:数3306用算筹表示成.用算筹表示的数是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】嘉琪同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图所示的□ABCD,并写出了如下尚不完整的已知和求证.
已知:如图,在四边形ABCD中,BC=AD,AB= .
求证:四边形ABCD是 四边形.
(1)补全已知和求证(在方框中填空);
(2)嘉琪同学想利用三角形全等,依据“两组对边分别平行的四边形是平行四边形”来证明.请你按她的想法完成证明过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰直角三角形ABC中,∠BAC=90°,AB=AC,D是斜边BC的中点,连接AD.
(1)如图1,E是AC的中点,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′,当AD=时,求AE的值.
(2)如图2,在AC上取一点E,使得CE=AC,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′交BC于点F,求证:DF=CF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:M=3a2+4ab -5a-6,N=a2-2ab-4
(1)化简:5M-(3N + 4M),结果用含a、b的式子表示.
(2)若式子5M-(3N + 4M)的值与字母a的取值无关,求b4+M-N-的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com