精英家教网 > 初中数学 > 题目详情

【题目】嘉琪同学要证明命题两组对边分别相等的四边形是平行四边形是正确的,她先用尺规作出了如图所示的□ABCD,并写出了如下尚不完整的已知和求证.

已知:如图,在四边形ABCD中,BC=ADAB=  

求证:四边形ABCD  四边形.

1)补全已知和求证(在方框中填空);

2)嘉琪同学想利用三角形全等,依据两组对边分别平行的四边形是平行四边形来证明.请你按她的想法完成证明过程.

【答案】1CD,平行;(2)证明见解析.

【解析】整体分析

(1)根据证明命题两组对边分别相等的四边形是平行四边形填空,结合图形和命题写出已知和求证;(2SSS证明△ABCCDA后,用内错角相等,两直线平行解题.

解:(1)补全已知和求证:

已知:在四边形ABCD中,BC=ADAB=CD

求证:四边形ABCD是平行四边形.

故答案为:CD;平行;

2)如图,连结AC

ABCCDA中,AB=CDBC=DAAC=CA

∴△ABCCDASSS),

∴∠BAC=DCABCA=DAC

ABDCBCAD

∴四边形ABCD是平行四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知∠AOB=120°,点A绕点O顺时针旋转后的对应点A1落在射线OB上,点A绕点A1顺时针旋转后的对应点A2落在射线OB上,点A绕点A2顺时针旋转后的对应点A3落在射线OB上,,连接AA1AA2AA3,依此作法,则∠AAnAn+1等于______度.(用含n的代数式表示,n为正整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=(x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。

解决问题:如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.

(1)使∠APB=30°的点P有_______

(2)若点P在y轴正半轴上,且∠APB=30°,求满足条件的点P的坐标;

(3)设sin∠APB=m,若点P在y轴上移动时, 满足条件的点P有4个,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AB分别在x轴、y轴上(OAOB),以AB为直径的圆经过原点OC的中点,连结ACBC.下列结论:①AC=BC②若OA=4OB=2,则ABC的面积等于5③若OAOB=4,则点C的坐标是(22.其中正确的结论有( )

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣43),B(﹣31),C(﹣13).

1)请按下列要求画图:

平移△ABC,使点A的对应点A1的坐标为(﹣4,﹣3),请画出平移后的△A1B1C1

A2B2C2与△ABC关于原点O中心对称,画出△A2B2C2

2)若将△A1B1C1绕点M旋转可得到△A2B2C2,请直接写出旋转中心M点的坐标   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了锻炼身体,强健体魄,小明和小强约定每天在两家之间往返长跑20分钟. 两家正好在同一直线道路边上,某天小明和小强从各自的家门口同时出发,沿两家之间的直线道路按各自的速度匀速往返跑步,已知小明的速度大于小强的速度. 在跑步的过程中,小明和小强两人之间的距离y(米)与他们出发的时间x(分钟)之间的关系如图所示,在他们3次相遇中,离小明家最近那次相遇时距小明家____米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)一个两位数A,十位数字为a,个位数字为b,交换ab的位置,得到一个新的两位数B,A+B一定能被______整除,A-B一定能被______整除;

(2)一个三位数M,百位数字为a,十位数字为b,个位数字为cabc均为19的整数),交换ac的位置,得到一个新的三位数N.请用含abc的式子分别表示数NM-N

(3) (2)ab1,MN792M.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的点P处,折痕与BC交于点O.

(1)求证:△OCP∽△PDA

(2)若PO:PA=1:2,则边AB的长是多少?

查看答案和解析>>

同步练习册答案