【题目】在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB的影子一部分落在水平地面L的影长BC为5米,落在斜坡上的部分影长CD为4米.测得斜CD的坡度i=1:.太阳光线与斜坡的夹角∠ADC=80°,则旗杆AB的高度_____.(精确到0.1米)(参考数据:sin50°=0.8,tan50°=1.2,=1.732)
科目:初中数学 来源: 题型:
【题目】如图,已知等腰△ABC,∠ACB=120°,P是线段CB上一动点(与点C,B不重合),连接AP,延长BC至点Q,使得∠PAC=∠QAC,过点Q作射线QH交线段AP于H,交AB于点M,使得∠AHQ=60°.
(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示);
(2)用等式表示线段QC和BM之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在内角不确定的△ABC中,AB=AC,点E、F分别在AB、AC上,EF∥BC,平行移动EF,如果梯形EBCF有内切圆.
当=时,sinB=;
当=时,sinB=(提示:=);当=时,sinB=.
(1)请你根据以上所反映的规律,填空:当=时,sinB的值等于______;
(2)当=时(n是大于1的自然数),请用含n的代数式表示sinB=______,并画出图形、写出已知、求证和证明过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】网络时代,新兴词汇层出不穷.为了解大众对网络词汇的理解,某兴趣小组举行了一个“我是路人甲”的调查活动:选取四个热词A:“硬核人生”,B:“好嗨哦”,C:“双击666”,D:“杠精时代”在街道上对流动人群进行了抽样调查,要求被调查的每位只能勾选一个最熟悉的热词,根据调查结果,该小组绘制了如下的两幅不完整的统计图,请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了 名路人.
(2)补全条形统计图;
(3)扇形图中的b= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小山顶上有一信号塔AB,山坡BC的倾角为30°,现为了测量塔高AB,测量人员选择山脚C处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E处,再测得塔顶仰角为60°,求塔高AB.(结果保留整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:探究函数y=x+ 的图象和性质.
小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:
(1)函数的自变量x的取值范围是:____;
(2)如表是y与x的几组对应值,请将表格补充完整:
x | … | ﹣3 | ﹣2 | ﹣ | ﹣1 | 1 | 2 | 3 | … | |||
y | … | ﹣3 | ﹣3 |
| ﹣3 | ﹣4 | 4 | 3 | … |
(3)如图,在平面直角坐标系中描点并画出此函数的图象;
(4)进一步探究:结合函数的图象,写出此函数的性质(一条即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着天气的逐渐炎热(如图1),遮阳伞在我们的日常生活中随处可见如图2所示,遮阳伞立柱OA垂直于地面,当将遮阳伞撑开至OD位置时,测得∠ODB=45°,当将遮阳伞撑开至OE位置时,测得∠OEC=30°,且此时遮阳伞边沿上升的竖直高度BC为20cm,求若当遮阳伞撑开至OE位置时伞下阴凉面积最大,求此时伞下半径EC的长.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC,AB=AC,BD是∠ABC的角平分线,EF是BD的中垂线,且分别交BC于点E,交AB于点F,交BD于点K,连接DE,DF.
(1)证明:DE//AB;
(2)若CD=3,求四边形BEDF的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.
(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?
(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?
(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?
【答案】(1)x+10元;(2)每个定价为70元,应进货200个.(3)每个定价为65元时得最大利润,可获得的最大利润是6250元.
【解析】试题分析:(1)根据利润=销售价-进价列关系式,(2)总利润=每个的利润×销售量,销售量为400-10x,列方程求解,根据题意取舍,(3)利用函数的性质求最值.
试题解析:由题意得:(1)50+x-40=x+10(元),
(2)设每个定价增加x元,
列出方程为:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使进货量较少,则每个定价为70元,应进货200个,
(3)设每个定价增加x元,获得利润为y元,
y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,当x=15时,y有最大值为6250,所以每个定价为65元时得最大利润,可获得的最大利润是6250元.
【题型】解答题
【结束】
24
【题目】猜想与证明:
如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.
拓展与延伸:
(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为 .
(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com