精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点A是以MN为直径的半圆上一个三等分点,点B是弧的中点,点P是半径ON上的点.若⊙O的半径为l,则AP+BP的最小值为(  )

A. 2B. C. D. 1

【答案】C

【解析】

首先找出点A关于MN对称的对称点A`,AP+BP的最小值就是A`B的长度.

如图,作点A关于MN的对称点A`,连接BA`交圆于P,则点P即是所求作的点,

∵A是半圆上一个三等分点,

∴∠AON=∠A`ON=360°÷2÷3=60°,

又∵点B是弧AN的中点,

∴∠BON= ∠AON= ×60°=30°

∴∠A'OB=∠A`ON+∠BON=60°+30°=90°

在Rt△A`OB中,由勾股定理得:

A`B =A`O +BO =1+1=2

得:A`B= ,

所以:AP+BP的最小值是

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,ABAC10BC16.点D在边BC上,且点D到边AB和边AC的距离相等.

1)用直尺和圆规作出点D(不写作法,保留作图痕迹,在图上标注出点D);

2)求点D到边AB的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙OAB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.

(1)求证:DFAC;

(2)求tanE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,以AB为直径的OBC相交于点D,过点DDEAC于点E

1)求证:DEO切线;

2)若tanB=BC16,求O直径AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC和DCB中,AB = DC,AC = DB,AC与DB交于点M.

1求证:ABC≌△DCB

2过点C作CNBD,过点B作BNAC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BCAB相交于点DE,连接AD.已知∠CAD=∠B

1)求证:AD是⊙O的切线;

2)若CD2AC4BD6,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将绕点B顺时针旋转,得到,连接.

(1)求证:为等边三角形;

(2),求

(3)已知,点在四边形内部(包括边界).若点F由点B运动至点E,其运动过程满足,求点运动路径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直觉的误差:有一张8cm×8cm的正方形纸片,面积是64cm2.把这些纸片按图1所示剪开成四小块,其中两块是三角形,另外两块是梯形.把剪出的4个小块按图2所示重新拼合,这样就得到了一个13cm×5cm的长方形,面积是65cm2,面积多了1cm2,这是为什么?

小明给出如下证明:如图2,可知,tanCEFtanEAB,∵tanCEFtanEAB,∴∠CEF>∠EAB,∵EFAB,∴∠EAB+AEF180°,∴CEF+AEF180°,因此AEC三点不共线.同理AGC三点不共线,所以拼合的长方形内部有空隙,故面积多了1cm2

1)小红给出的证明思路为:以B为原点,BC所在的直线为x轴,建立平面直角坐标系,证明三点不共线.请你帮小红完成她的证明;

2)将13cmx13cm的正方形按上述方法剪开拼合,是否可以拼合成一个长方形,但面积少了1cm2?如果能,求出剪开的三角形的短边长;如果不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点AACx轴交抛物线于点C,AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.

(1)求抛物线的解析式;

(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;

(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案