精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,AD是高,CE是中线,点G是CE的中点,DG⊥CE,点G为垂足.
(1)求证:DC=BE;
(2)若∠AEC=66°,求∠BCE的度数.

【答案】
(1)证明:如图,

∵G是CE的中点,DG⊥CE,

∴DG是CE的垂直平分线,

∴DE=DC,

∵AD是高,CE是中线,

∴DE是Rt△ADB的斜边AB上的中线,

∴DE=BE= AB,

∴DC=BE;


(2)解:∵DE=DC,

∴∠DEC=∠BCE,

∴∠EDB=∠DEC+∠BCE=2∠BCE,

∵DE=BE,

∴∠B=∠EDB,

∴∠B=2∠BCE,

∴∠AEC=3∠BCE=66°,则∠BCE=22°.


【解析】(1)由G是CE的中点,DG⊥CE得到DG是CE的垂直平分线,根据线段垂直平分线的性质得到DE=DC,由DE是Rt△ADB的斜边AB上的中线,根据直角三角形斜边上的中线等于斜边的一半得到DE=BE= AB,即可得到DC=BE;(2)由DE=DC得到∠DEC=∠BCE,由DE=BE得到∠B=∠EDB,根据三角形外角性质得到∠EDB=∠DEC+∠BCE=2∠BCE,则∠B=2∠BCE,由此根据外角的性质来求∠BCE的度数.
【考点精析】本题主要考查了直角三角形斜边上的中线的相关知识点,需要掌握直角三角形斜边上的中线等于斜边的一半才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我区儿童公园北门处有一座石拱桥,如图,石拱桥的桥顶到水面的距离CD为8cm,拱桥半径OC为5cm,求水面宽AB为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形均是一些科技创新公司标志图,其中既是中心对称图形又是轴对称图形的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把等腰直角放在直角坐标系内,其中,点的坐标分别为,将等腰直角沿轴向右平移,当点落在直线上时,则线段扫过的面积为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABAC上各取一点ED,使AE=AD,连接BDCE相交于点O,再连接AOBC,若∠1=2,则图中全等三角形共有(  )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知甲同学手中藏有三张分别标有数字 、1的卡片,乙同学手中藏有三张分别标有数字1、3、2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.
(1)请你用树形图或列表法列出所有可能的结果;
(2)现制定一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请用概率知识解释.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xoy中,E8,0),F(0 , 6)

1)当G(48)时,则∠FGE= °

2)在图中的网格区域内找一点P,使∠FPE=90°且四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形.

要求:写出点P点坐标,画出过P点的分割线并指出分割线(不必说明理由,不写画法).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,A=∠ACBCDACB的平分线,ADC=150°,则ABC的度数为_____度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知实数m满足m2﹣m﹣2=0,当m=时,函数y=xm+(m+1)x+m+1的图象与x轴无交点.

查看答案和解析>>

同步练习册答案