【题目】如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,动点D从点A出发以每秒3个单位的速度运动至点B,过点D作DE⊥AB交射线AC于点E.设点D的运动时间为t秒(t>0).
(1)线段AE的长为 .(用含t的代数式表示)
(2)若△ADE与△ACB的面积比为1:4时,求t的值.
(3)设△ADE与△ACB重叠部分图形的周长为L,求L与t之间的函数关系式.
(4)当直线DE把△ACB分成的两部分图形中有一个是轴对称图形时,直接写出t的值.
【答案】(1)5t;(2);(3)当时,L=12t,当时, ;(4)或1.
【解析】【试题分析】(1)利用三角函数求解;(2)根据△ADE与△ACB的面积比为1:4列出方程求解;(3)按照和两种情况讨论; (4)当DE=CE时,四边形BCED是轴对称图形,和当DE和BC相交于F,AD=AC时,四边形ACFE是轴对称图形两种情形讨论.
【试题解析】
(1)在Rt△ABC中,tanA==
由题意得,AD=3t,
在Rt△ADE中,tanA===,
根据勾股定理得,AE=5t.
故答案为5t;
(2)方法一:∵ED⊥AB,
∴∠ADE=90°.∵∠ACB=90°,
∴∠ACB=∠ADE.∠A=∠A,
∴△ABC∽△AED,
∴.
∵AD=3t,AC=3,BC=4,
∴DE=4t.
∴.
∵,
∵,
∴.
∴(舍)
∴t的值为.
方法二:∵ED⊥AB,
∴∠ADE=90°.
∵∠ACB=90°,
∴∠ACB=∠ADE.
∵∠A=∠A,
∴△ABC∽△AED,
∵,
∴.
∵AC=3,AD=3t,
∴2×3t=3,t=.
(3)由(2)得:△ABC∽△AED,
∴.
∵AD=3t,
∴DE=4t,AE=5t.BD=5﹣3t,
∴当时,L=3t+4t+5t=12t.
∴L=12t.
当时,如图,
∵∠B=∠B,∠BDF=∠BCA,
∴△ABC∽△FBD,
∴.
∵BD=5﹣3t,
∴.
∵∠BFD=∠EFC,∠BDF=∠ECF,
∴∠B=∠E,
∵∠FCE=∠BCA
∴△BCA∽△ECF,
∴.
∵CE=5t﹣3,
∴.
.
∴.
(4)由(1)知,AE=5t,DE=4t,
∴CE=3﹣5t,
当DE=CE时,四边形BCED是轴对称图形,
∴4t=3﹣5t,
∴t=,
当DE和BC相交于F,AD=AC时,四边形ACFE是轴对称图形,
∵AD=3t,AC=3,
∴3t=3,
∴t=1.
即:满足条件的时间t为或1.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=640,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;∠A2BC和∠A2CD的平分线交于点A3,则∠A5= ______ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.
(1)你认为图②中的阴影部分的正方形的边长等于_______________.
(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.
方法①___________________. 方法②________________.
(3)观察图②,你能写出这三个代数式之间的等量关系吗?
(4)利用以上等量关系,解决问题:已知a+b=3,ab=-2,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象交于A,B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=4 ,cos∠ACH=,点B的坐标为(4,n).
(1)求该反比例函数和一次函数的解析式;
(2)求△BCH的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“十一”黄金周,坚胜家电城大力促销,收银情况一直看好下表为当天与前一天的营业额的涨跌情况已知9月30日的营业额为26万元.
10月1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
4 | 3 | 2 | 0 |
|
|
|
黄金周内收入最低的哪一天?直接回答,不必写过程.
黄金周内平均每天的营业额是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形,长,宽, 、分别是、上运动的两点。若自点出发,以的速度沿方向运动,同时, 自点出发以的速度沿方向运动,则经过____________秒,以、、为顶点的三角形与相似。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC为⊙O的直径,B是⊙O外一点,AB交⊙O于E点,过E点作⊙O的切线,交BC于D点,DE=DC,作EF⊥AC于F点,交AD于M点。
求证:(1)BC是⊙O的切线; (2)EM=FM。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是( )
A. 25° B. 30° C. 35° D. 40°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,D是⊙O上一点,点E是AC的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.
(1)求证:AB=BC;
(2)如果AB=5,tan∠FAC=,求FC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com