精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在ABC中,AD是∠BAC的平分线,AHBC边上的高,H是垂足.如果∠B=65°,∠C=45°,求∠DAH的度数.

【答案】DAH的度数是10°

【解析】

由三角形的内角和定理,可求∠BAC=70°,又由AE是∠BAC的平分线,可求∠BAE=35°,再由ADBC边上的高,可知∠ADB=90°,可求∠BAD=25°,所以∠DAE=BAE-BAD=10°

解:∵∠B=65°∠C=45°∠B+∠C+∠CAB=180°

∠CAB=70°

AD∠BAC的平分线,

∠CAD=∠BAD=35°

AHBC边上的高,H是垂足,

∠AHB=90°

∠B+∠AHB+∠BAH=180°

∠BAH=25°

∠DAH=10°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ACB=90°AC=6cmBC=8cm.点PA点出发沿A→C→B路径向终点运动,终点为B点;点QB点出发沿B→C→A路径向终点运动,终点为A点.点PQ分别以每秒1cm3cm的运动速度同时开始运动,当一个点到达终点时另一个点也停止运动,在某时刻,分别过PQPElEQFlF.设运动时间为t秒,则当t=______秒时,PECQFC全等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个等腰三角形的周长为25cm.

(1)已知腰长是底边长的2倍,求各边的长;

(2)已知其中一边的长为6cm.求其它两边的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图.在数学活动课中,小明剪了一张△ABC的纸片,其中∠A=60°,他将△ABC折叠压平使点A落在点B处,折痕DE,DAB上,EAC上.

(1)请作出折痕DE;(要求:尺规作图,不写作法,保留作图痕迹)

(2)判断△ABE的形状并说明;

(3)若AE=5,BCE的周长为12,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.

(1)如图2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;

(2)若三角尺GEF旋转到如图3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,四边形ABCD是正方形,ECD的中点,PBC边上的一点,下列条件:BC的中点;3,其中能推出的有  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC是等边三角形,P为平面内的一个动点,BP=BA0<PBC<180 DB平分∠PBC,且DB=DA

1)当BPBA重合时(如图1),求∠BPD的度数;

2)当BP在∠ABC的内部时(如图2),求∠BPD的度数;

3)当BP在∠ABC的外部时,请你直接写出∠BPD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线上部分点的横坐标 纵坐标的对应值如下表:

0

1

2

0

4

6

6

4

从上表可知,下列说法正确的是

①抛物线与轴的一个交点为; ②抛物线与轴的交点为

③抛物线的对称轴是:直线;   在对称轴左侧增大而增大.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC是边长为6cm的等边三角形,动点PQ同时从AB两点出发,分别沿ABBC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,PQ两点都停止运动,设运动时间为ts),解答下列问题:

1)当t2时,判断△BPQ的形状,并说明理由;

2)设△BPQ的面积为Scm2),求St的函数关系式;

3)作QR//BAAC于点R,连结PR,当t为何值时,△APR∽△PRQ

查看答案和解析>>

同步练习册答案