精英家教网 > 初中数学 > 题目详情

【题目】知识链接:

“转化、化归思想”是数学学习中常用的一种探究新知、解决问题的基本的数学思想方法,通过“转化、化归”通常可以实现化未知为已知,化复杂为简单,从而使问题得以解决.

1)问题背景:已知:△ABC.试说明:∠A+B+C=180°.

问题解决:(填出依据)

解:(1)如图①,延长ABE,过点BBFAC.

BFAC(作图)

∴∠1=C

2=A

∵∠2+ABC+1=180°(平角的定义)

∴∠A+ABC+C=180°(等量代换)

小结反思:本题通过添加适当的辅助线,把三角形的三个角之和转化成了一个平角,利用平角的定义,说明了数学上的一个重要结论“三角形的三个内角和等于180°.

2)类比探究:请同学们参考图②,模仿(1)的解决过程试说明“三角形的三个内角和等于180°”

3)拓展探究:如图③,是一个五边形,请直接写出五边形ABCDE的五个内角之和∠A+B+C+D+E= .

【答案】(1)(2) 见解析;(3540°

【解析】

(1)运用平行线的性质进行分析即可;(2)运用两次两直线平行,内错角相等即可;(3)连接ECEB,转换成三个三角形的内角和即可.

解:(1)如图①,延长ABE,过点BBFAC.

BFAC(作图)

∴∠1=C(两直线平行,内错角相等)

2=A(两直线平行,同位角相等)

∵∠2+ABC+1=180°(平角的定义)

∴∠A+ABC+C=180°(等量代换)

2)如图,过CMN∥AB

MN∥AB

∴∠1=B,2=A(两直线平行,内错角相等)

又∵∠1+∠ACB+∠2=180°(平角的定义)

A+ABC+C=180°

(3)如图:连接ECEB

△ABC、△ACD和△AED中,

∴∠BAC+∠B+∠ACB=180"∠DAC+∠ACD+∠ADC=180°∠DAE+∠E+∠ADE=180°

∴∠BAE+∠B+∠DCB+ ∠CDE+∠E

=∠BAC+∠CAD+∠DAE+∠BCA+∠ACD+∠ADE+∠ADC+∠B+∠E

=(∠BAC+∠B+∠ACB)+( ∠DAC+∠ACD+∠ADC)+( ∠DAE+∠E+∠ADE)

=540°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某厂为了检验甲、乙两车间生产的同一种零件的直径的合格情况,随机各抽取了10个样品进行检测,已知零件的直径均为整数,整理数据如下:(单位:

170174

175179

180184

185189

甲车间

1

3

4

2

乙车间

0

6

2

2

1)分别计算甲、乙两车间生产的零件直径的平均数;

2)直接说出甲、乙两车间生产的零件直径的中位数都在哪个小组内,众数是否在其相应的小组内?

3)若该零件的直径在的范围内为合格,甲、乙两车间哪一个车间生产的零件直径合格率高?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.

(1)求证:四边形AECD为平行四边形;

(2)连接CO,求证:CO平分∠BCE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于点MN;②作直线MNCD于点E,若AB=8AD=6,则EC=_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,ADABC的中线,EAD的中点,过点AAFBCBE延长线于点F,连接CF.

(1)如图1,求证:四边形ADCF是平行四边形;

(2)如图2.连接CE,在不添加任何助线的情况下,请直接写出图2中所有与BEC面积相等的三角形。

1 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点EFGH分别是四边形ABCD的边ABBCCDDA的中点.

1)如果图中线段都可画成有向线段,那么在这些有向线段所表示的向量中,与向量相等的向量是   

2)设.试用向量表示下列向量:      

3)求作:.(请在原图上作图,不要求写作法,但要写出结论)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则AOC的面积为(  )

A. 12 B. 9 C. 6 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).

(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是

(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形中,点在对角线上,过点,分别交于点,连结.,图中阴影部分的面积为,则矩形的周长为_______.

查看答案和解析>>

同步练习册答案