【题目】如图,菱形的顶点在轴上,反比例函数()的图像经过顶点,和边的中点.若,则的值为( )
A.B.C.D.
【答案】D
【解析】
作BE⊥x轴,DF⊥x轴,根据菱形的性质可得OB∥AC,OB=AB=AC=6,进而可得AD=AC=3,由平行可得△BOE∽△DAF,进而可得,设AF=a,DF=b,则OE=2a,BE=2b,由此可表示出点B、D的坐标,代入函数关系式可得方程,进而可求得k的值.
解:如图,分别过点B、D作BE⊥x轴,DF⊥x轴,垂足分别为E、F,
则∠BEO=∠DFA=90°,
∵在菱形AOBC中,
∴OB∥AC,OB=AB=AC=6,
∵点D为AC的中点,
∴AD=AC=3,
∵OB∥AC,
∴∠BOE=∠DAF,
∴△BOE∽△DAF,
∴,
∴设AF=a,DF=b,
则OE=2a,BE=2b,
∴点D(6+a,b),点B(2a,2b),
∵点B、D均在反比例函数图像上,
∴将点D(6+a,b),点B(2a,2b)代入得:
b(6+a)=2a·2b=k,
解得a=2,
∴OE=2a=4,
在Rt△BOE中,BE=,
∴点B(4,),
∴.
故选:D.
科目:初中数学 来源: 题型:
【题目】为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:
(1)本次抽样调查测试的建档立卡贫困户的总户数______.
(2)图1中,∠α的度数是______,并把图2条形统计图补充完整.
(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?
(4)调查人员想从5户建档立卡贫困户(分别记为)中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究:
如图1,抛物线与轴交于两点(点在点的左侧),顶点为,为对称轴右侧抛物线的一个动点,直线与轴于点,过点作,交轴于点.
(1)求直线的函数表达式及点的坐标;
(2)如图2,当轴时,将以每秒1个单位长度的速度沿轴的正方向平移,当点与点重合时停止平移.设平移秒时,在平移过程中与四边形重叠部分的面积为,求关于的函数关系式,并写出自变量的取值范围;
(3)如图3,过点作轴的平行线,交直线于点,直线与交于点,设点的横坐标为.
①当时,求的值;
②试探究点在运动过程中,是否存在值,使四边形是菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过原点的直线与反比例函数y=(k>0)的图象交于点A,B两点,在x轴有一点C(3,0),AC⊥BC,连结AC交反比例函数图象于点D,若AD=CD,则k的值为( )
A.B.2C.2D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD的对角线交于点O,以OD,CD为邻边作平行四边形DOEC,OE交BC于点F,连结BE.
(1)求证:F为BC中点.
(2)若OB⊥AC,OF=1,求平行四边形ABCD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了防控新型冠状病毒,购买了甲、乙两种消毒液进行校园环境消毒.己知学校第一次购买了甲种消毒液40瓶和乙种消毒液60瓶,共花费3 600元;第二次购买了甲种消毒液60瓶和乙种消毒液40瓶,共花费3 400元.
(1)每瓶甲种消毒液和每瓶乙种消毒液的价格分别是多少元?
(2)学校准备第三次购买这两种消毒液,其中甲种消毒液比乙种消毒液多10瓶,并且总花费不超过3 500元,最多能购买多少瓶甲种消毒液?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们学习了勾股定理后,都知道“勾三、股四、弦五”.
观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.
(1)请你根据上述的规律写出下一组勾股数:________.
(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为________和________,请用所学知识说明它们是一组勾股数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】姐妹两人在50米的跑道上进行短路比赛,两人从出发点同时起跑,姐姐到达终点时,妹妹离终点还差3米,已知姐妹两人的平均速度分别为a米/秒、b米/秒.
(1)如果两人重新开始比赛,姐姐从起点向后退3米,姐妹同时起跑,两人能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.
(2)如果两人想同时到达终点,应如何安排两人的起跑位置?请你设计两种方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,
其中正确的是( )
A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com