精英家教网 > 初中数学 > 题目详情

【题目】如图,自左向右,水平摆放一组小球,按照以下规律排列,如:红球,黄球,绿球,红球,黄球,绿球,…嘉琪依次在小球上标上数字123456,…,则从左往右第100个黄球上所标的数字为__________

【答案】299

【解析】

由图可知,每三个球一个循环,左边第一个黄球的数字是2,第二个黄球的数字是2+3=5,第三个黄球的数字是2+3×2=8,…第n个黄球的数字为2+3×(n-1)=3n-1,据此即可解答本题.

解:由题意得,每三个球一个循环,

左边第一个黄球的数字是2

左边第二个黄球的数字是2+3=5

左边第三个黄球的数字是2+3×2=8

左边第n个黄球的数字为2+3×(n-1)=3n-1

∴从左往右第100个黄球上所标的数字为:

故答案为:299

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知两点在数轴上,点表示的数为-10,点以每秒3个单位长度的速度从点向右运动.点以每秒2个单位长度的速度从点向右运动(点同时出发)

1)请你写出数轴上点对应的数;

2)当运动的时间为3秒时,请你求出此时点在数轴上对应的数,并求出之间的距离;

3)经过几秒,点、点分别到原点的距离相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是等腰直角三角形,∠ACB=90°,AC=BC=2,把ABC绕点A按顺时针方向旋转45°后得到AB′C′,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料并解决后面的问题

材料:对数的创始人是苏格兰数学家纳皮尔(JNpler1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler1707--1783)才发现指数与对数之间的联系,我们知道,n个相同的因数a相乘aa…a记为an,如23=8,此时,3叫做以2为底8的对数,记为log28,即log28=3一般地若an=ba0a≠1b0),则n叫做以a为底b的对数,记为logab,即logab=n.如34=81,则4叫做以3为底81的对数,记为log381,即log381=4

1)计算下列各对数的值:log24=______log216=______log264=______;

2)通过观察(1)中三数log24log216log264之间满足的关系式是______

3)拓展延伸:下面这个一股性的结论成立吗?我们来证明logaM+logaN=logaMNa0a≠1M0N0

证明:设logaM=mlogaN=n

由对数的定义得:am=Man=N

aman=am+n=MN

logaMN=m+n

又∵logaM=mlogaN=n

logaM+logaN=logaMNa0a≠1M0N0);

4)仿照(3)的证明,你能证明下面的一般性结论吗?logaM-logaN=logaa0a≠1M0N0

5)计算:log34+log39-log312的值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在四边形ABCD中,ACBD于点E,AB=AC=BD,点MBC中点,N为线段AM上的点,且MB=MN.

(1)求证:BN平分∠ABE;

(2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;

(3)如图②,若点FAB的中点,连结FN、FM,求证:MFN∽△BDC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2.

(1)第一批饮料进货单价多少元?

(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=4,ECD上一动点,AEBDF,过FFHAEH,过HGHBDG,下列有四个结论:①AF=FH,②∠HAE=45°,BD=2FG,④△CEH的周长为定值,其中正确的结论有(  )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数轴上分别表示有理数两点之间的距离表示为,在数轴上AB两点之间的距离

利用数形结合思想回答下列问题:

(1)数轴上表示-21的两点之间的距离是______

(2)数轴上表示-1的两点之间的距离表示为______

(3)在数轴上点表示数,点表示数,点表示数,且满足,若是数轴上任意一点,点表示的数是,当时,的值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方体的底面是边长为2cm的正方形,高是6cm

1)如果用一根细线从点A开始经过4个侧面围绕一圈到达点B.那么所用的细线最短长度是多少厘米?

2)如果从A点开始经过4个侧面缠绕2圈到达点B,那么所用细线最短长度是多少厘米?

查看答案和解析>>

同步练习册答案