【题目】如图①,在矩形中,,对角线,相交于点,动点由点出发,沿向点运动.设点的运动路程为,的面积为,与的函数关系图象如图②所示,则边的长为__________.
【答案】4
【解析】
当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解.
解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为3.
∴ABBC=3,即ABBC=12.
当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,
∴AB+BC=7.
则BC=7-AB,代入ABBC=12,得AB2-7AB+12=0,解得AB=4或3,
因为AB<AD,即AB<BC,
所以AB=3,BC=4
∴AD=BC=4.
故答案为:4.
科目:初中数学 来源: 题型:
【题目】已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过点C作CE⊥BD,交BD的延长线于点E,如图①.
(1)求证:ADCD=BDDE;
(2)若BD是边AC的中线,如图②,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为( )
A. 140° B. 100° C. 50° D. 40°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在的正方形网格中,每个小正方形的边长为1,建立如图所示的坐标系.的三个顶点均在格点上.
(1)若将沿x轴对折得到,则的坐标为_______;
(2)以点B为位似中心,将各边放大为原来的2倍,得到,请在这个网格中画出;
(3)在(2)的条件下,若小明蒙上眼睛在一定距离外,向的正方形网格内掷小石子,则刚好掷入的概率是多少?(未掷入图形内则不计次数,重掷一次)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】被誉为“中原第一高楼”的郑州会展宾馆(俗称“大玉米”)坐落在风景如画的如意湖畔,是来郑州观光的游客留影的最佳景点,学完了三角函数知识后,刘明和王华同学决定用自己学到的知识测量“大玉米”的高度他们制订了测量方案,并利用课余时间完成了实地测量,测量项目及结果如下表
请你帮助该小组根据上表中的测量数据,求出郑州会展宾馆的高度.
(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果保留整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.
(1)求证:四边形AODE是矩形;
(2)若AB=2,AC=2,求四边形AODE的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在中,分别为上一点,且,,.
(1)求证:;
(2)求证:;
(3)若,将绕顺时针旋转至如图2所示位置(不动),连,取中点,连,为射线上一点,连,求的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知不等臂跷跷板AB长为3米,跷跷板AB的支撑点O到地面上的点H的距高OH=0.6米。当跷跷板AB的一个端点A碰到地面时,AB与地面上的直线AH的夹角∠OAH的度数为30°.
(1)当AB的另一个端点B碰到地面时(如右图),跷跷板AB与直线BH的夹角∠ABH的正弦值是多少?
(2)当AB的另一个端点B碰到地面时(如右图),点A到直线BH的距离是多少米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com