【题目】如图,已知⊙O是Rt△ABC的外接圆,∠ACB=90°,AC平分∠BAD,CD⊥AD于D,AD交⊙O于E.
(1)求证:CD为⊙O的切线;
(2)若⊙O的直径为8cm,CD=2cm,求弦AE的长.
【答案】(1)见解析;(2)4
【解析】
试题分析:(1)连接OC,由等腰三角形的性质和角平分线得出∠2=∠3,证出∴OC∥AD,再由已知条件得出CD⊥OC,即可得出结论;
(2)作OF⊥AE于F,则AF=AE,四边形OFDC是矩形,得出OF=CD=2cm,由勾股定理求出AF,即可得出AE的长.
(1)证明:连接OC,如图所示:
∵OA=OC,
∴∠1=∠3,
∵AC平分∠BAD,
∴∠1=∠2,
∴∠2=∠3,
∴OC∥AD,
∵CD⊥AD,
∴CD⊥OC,
∴CD为⊙O的切线;
(2)解:作OF⊥AE于F,如图2所示:
则AF=AE,四边形OFDC是矩形,
∴OF=CD=2cm,
∵OA=AB=4cm,
∴AF===2,
∴AE=2AF=4.
科目:初中数学 来源: 题型:
【题目】如图,两根旗杆相距12m,某人从B点沿BA走向A点,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM,已知旗杆AC的高为3m,该人的运动速度为1m/s,求:这个人从B点到M点运动了多长时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( ).
A. 频数越小,频率越大 B. 频数大,频率也一定大
C. 频数一定时,频率越小,总次数越大 D. 频数很大时,频率可能超过1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明袋子中有1个红球和n个白球,这些球除颜色外无其他差别.
(1)当n=l时,从袋中随机摸出1个球,摸到红球与摸到白球的可能性是否相同? (填“相同”或“不相同”)
(2)从袋中随机摸出1个球,记录其颜色,然后放回,大量重复该实验,发现摸到红球的频率稳定于0.25,则n的值是 ;
(3)当n=2时,请用列表或画树状图的方法求两次摸出的球颜色不同的概率(摸出一个球,不放回,然后再摸一个球).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.如果一条直线与果圆只有一个交点,则这条直线叫做果圆的切线.已知A、B、C、D四点为果圆与坐标轴的交点,E为半圆的圆心,抛物线的解析式为y=x2﹣2x﹣3,AC为半圆的直径.
(1)分别求出A、B、C、D四点的坐标;
(2)求经过点D的果圆的切线DF的解析式;
(3)若经过点B的果圆的切线与x轴交于点M,求△OBM的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,下面不能判断是平行四边形的是( )
A.∠B=∠D,∠A=∠C
B.AB∥CD,AD∥BC
C.AB∥CD,AB=CD
D.∠B+∠DAB=180°,∠B+∠BCD=180°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AB∥CD,BC⊥CD,E是AD的中点,连结BE并延长交CD的延长线于点F.
(1)请连结AF、BD,试判断四边形ABDF是何种特殊四边形,并说明理由.
(2)若AB=4,BC=5,CD=6,求△BCF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市5月的某一周每天的最高气温(单位:℃)统计如下:19,20,24,22,24,26,27,则这组数据的中位数与众数分别是( )
A.23,24 B.24,22
C.24,24 D.22,24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AB=10,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F恰好为DC的中点,DG⊥AE,垂足为G.若DG=3,则AE的边长为( )
A.2 B.4 C.8 D.16
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com