【题目】如图,在平面直角坐标系中,四边形的顶点坐标分别为,,,.动点从点出发,以每秒个单位长度的速度沿边向终点运动;动点从点同时出发,以每秒1个单位长度的速度沿边向终点运动,设运动的时间为秒,.
(1)直接写出关于的函数解析式及的取值范围:_______;
(2)当时,求的值;
(3)连接交于点,若双曲线经过点,问的值是否变化?若不变化,请求出的值;若变化,请说明理由.
【答案】(1);(2),;(3)经过点的双曲线的值不变.值为.
【解析】
(1)过点P作PE⊥BC于点E,依题意求得P、Q的坐标,进而求得PE、EQ的长,再利用勾股定理即可求得答案,由时间=距离速度可求得t的取值范围;
(2)当,即时,代入(1)求得的函数中,解方程即可求得答案;
(3)过点作于点,求得OB的长,由,可求得,继而求得OD的长,利用三角函数即可求得点D的坐标,利用反比例函数图象上点的特征即可求得值.
(1)过点P作PE⊥BC于点E,如图1:
∵点B、C纵坐标相同,
∴BC⊥y轴,
∴四边形OPEC为矩形,
∵运动的时间为秒,
∴,
在中,,,,
∴,
即,
点Q运动的时间最多为:(秒) ,
点P运动的时间最多为:(秒) ,
∴关于的函数解析式及的取值范围为:;
(2)当时,
整理,得,
解得:,.
(3)经过点的双曲线的值不变.
连接,交于点,过点作于点,如下图2所示.
∵,,
∴.
∵,
∴,
∴,
∴.
∵,
∴.
在中,,,
∴,,
∴点的坐标为,
∴经过点的双曲线的值为.
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b=0;③m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的有( )
A.①②③B.②④C.②⑤D.②③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE. 将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现
① 当时,;② 当时,
(2)拓展探究
试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.
(3)问题解决
当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小明同学设计的“过圆外一点作圆的切线”的尺规作图的过程.
已知:如图1,和外的一点.
求作:过点作的切线.
作法:如图2,
①连接;
②作线段的垂直平分线,直线交于;
③以点为圆心,为半径作圆,交于点和;
④作直线和.
则,就是所求作的的切线.
根据上述作图过程,回答问题:
(1)用直尺和圆规,补全图2中的图形;
(2)完成下面的证明:
证明:连接,,
∵由作图可知是的直径,
∴(______)(填依据),
∴,,
又∵和是的半径,
∴,就是的切线(______)(填依据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.
(1)求证:DE是⊙O的切线;
(2)若AD=16,DE=10,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A、B、C,D在⊙O上,且 = ,E是AB延长线上一点,且BE=AB,F是CE中点, 为80°
(1)求证:BD=2BF;
(2)试探究:当∠E等于多少度时,BD∥CE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.
(1)小礼诵读《论语》的概率是 ;(直接写出答案)
(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com