【题目】已知:△ABC是⊙O的内接正三角形,P为弧BC上一点(与点B、C不重合),
(1)如果点P是弧BC的中点,求证:PB+PC=PA;
(2)如果点P在弧BC上移动时,(1)的结论还成立吗?请说明理由.
【答案】(1)详见解析;(2)结论成立,理由详见解析.
【解析】
(1)连OB,OC,由点P是弧BC的中点,△ABC是⊙O的内接正三角形,根据垂径定理的推论得到AP为⊙O的直径,易得△OBP和△OPC都是等边三角形,于是得到结论;
(2)截取PE=PC,则△PEC为等边三角形,得到CE=CP,∠PCE=60°,易证△CAE≌△CBP,得到AE=PB,即有PB+PC=PA.
(1)连OB,OC,如图
∵点P是弧BC的中点,△ABC是⊙O的内接正三角形,
∴AP为⊙O的直径,
∴∠BPO=∠ACB,∠APC=∠ABC,
∵△ABC是⊙O的内接正三角形,
∴∠ACB=∠ABC=60°,
∴∠BPO=∠APC=60°,
∴△OBP和△OPC都是等边三角形,
∴PB=PC=OP=OA,
∴PB+PC=PA;
(2)(1)的结论还成立.理由如下:
截取PE=PC,
∵∠APC=60°,
∴△PEC为等边三角形,
∴CE=CP,∠PCE=60°,
而∠ACB=60°,
∴∠ACE=∠BCP,
而CA=CB,
∴△CAE≌△CBP,
∴AE=PB,
∴PB+PC=PA.
科目:初中数学 来源: 题型:
【题目】如图,点E,F分别在正方形ABCD的边CD,BC上,且,点P在射线BC上(点P不与点F重合).将线段EP绕点E顺时针旋转得到线段EG,过点E作GD的垂线QH,垂足为点H,交射线BC于点Q.
(1)如图1,若点E是CD的中点,点P在线段BF上,线段BP,QC,EC的数量关系为________.
(2)如图2,若点E不是CD的中点,点P在线段BF上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.
(3)正方形ABCD的边长为6,,,请直接写出线段BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过原点的直线与反比例函数y=(x>0)、反比例函数y=(x>0)的图象分别交于A、B两点,过点A作y轴的平行线交反比例函数y=(x>0)的图象于C点,以AC为边在直线AC的右侧作正方形ACDE,点B恰好在边DE上,则正方形ACDE的面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,⊙P的圆心是(2,a)(a >0),半径是2,与y轴相切于点C,直线y=x被⊙P截得的弦AB的长为,则a的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图像如图所示,下列结论:(1)a+b+c=0(2)a-b+c>0(3)abc>0(4)b=-2a;其中正确的结论个数有其中正确的个数是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知某商品进价每件 40 元,现售价每件 60 元,每星期可卖出 300 件,经市场调查反映,每次涨价 1 元,每星期可少卖 10 件
(1)要想获利 6090 元的利润,该商品应定价多少元?
(2)能否获利 7000 元,试说明理由?
(3)该商品应定价多少元时,获利最大,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=3x与反比例函数y=(k≠0)的图象交于A(1,m)和点B.
(1)求m,k的值,并直接写出点B的坐标;
(2)过点P(t,0)(-1≤t≤1)作x轴的垂线分别交直线y=3x与反比函数y=(k≠0)的图象于点E,F.
①当t=时,求线段EF的长;
②若0<EF≤8,请根据图象直接写出t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com