【题目】如图,中,,,,若动点P从点C开始,按的路径运动,且速度为每秒1cm,设出发的时间为t秒.
出发2秒后,求的面积;
当t为几秒时,BP平分;
问t为何值时,为等腰三角形?
【答案】(1)18;(2)当秒时,BP平分;(3)或13s或12s或时为等腰三角形.
【解析】
(1)利用勾股定理得出AC=8cm,进而表示出AP的长,进而得出答案;
(2)过点P作PD⊥AB于点D,由HL证明Rt△BPD≌Rt△BPC,得出BD=BC=6cm,因此AD=10﹣6=4cm,设PC=x cm,则PA=(8﹣x)cm,由勾股定理得出方程,解方程即可;
(3)利用分类讨论的思想和等腰三角形的特点及三角形的面积求出答案.
(1)如图1.
∵∠C=90°,AB=10cm,BC=6cm,∴AC=8cm,根据题意可得:PC=2cm,则AP=6cm,故△ABP的面积为:×AP×BC=×6×6=18(cm2);
(2)如图2所示,过点P作PD⊥AB于点D.
∵BP平分∠CBA,∴PD=PC.
在Rt△BPD与Rt△BPC中,,∴Rt△BPD≌Rt△BPC(HL),∴BD=BC=6 cm,∴AD=10﹣6=4 cm.
设PC=x cm,则PA=(8﹣x)cm
在Rt△APD中,PD2+AD2=PA2,即x2+42=(8﹣x)2,解得:x=3,∴当t=3秒时,BP平分∠CBA;
(3)如图3,若P在边AC上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;
若P在AB边上时,有3种情况:
①如图4,若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,所以用的时间为12s,故t=12s时△BCP为等腰三角形;
②如图5,若CP=BC=6cm,过C作斜边AB的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;
③如图6,若BP=CP时,则∠PCB=∠PBC.
∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC,∴PA=PB=5cm
∴P的路程为13cm,所以时间为13s时,△BCP为等腰三角形.
综上所述:当t=6s或13s或12s或 10.8s 时△BCP为等腰三角形.
科目:初中数学 来源: 题型:
【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;
(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已A为顶点的等腰△ABC中,∠ABC、∠ACB的平分线相交于点D,过点D作EF∥BC分别交AB、AC于E、F.
(1)求证:BE=DE;
(2)若△ABC的周长比△AEF的周长大10,试求出BC的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为提高学生身体素质,决定开展足球、篮球、台球、乒乓球四项课外体育活动,并要求学生必须并且只能选择一项.为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并绘制出以下两幅不完整的统计图.请根据统计图回答下列问题.(要求写出简要的解答过程)
(1)这次活动一共调查了多少名学生?
(2)补全条形统计图.
(3)若该学校总人数是1300人,请估计选择篮球项目的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小区超市一段时间每天订购面包进行销售,每售出1个面包获利润0.5元,未售出的每个亏损0.3元.
(1)若该超市每天订购面包80个,今后每天售出的面包个数用x(0<x≤80)表示,每天销售面包的利润用y(元)表示,请用含x的式子表示y;
(2)小明连续m天对该超市的面包销量进行统计,并制成了频数分布直方图(每组含最小值,不含最大值)和扇形统计图,如图所示.请根据两图提供的信息计算在m天内日销售利润少于32元的天数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,B是反比例函数y= 图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D,若D为OB的中点,△AOD的面积为3,则k的值为.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】潜山市某村办工厂,今年前5个月生产某种产品的总量C(件)关于时间t(月)的函数图象如图所示,则该厂对这种产品来说( )
A. 1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减少
B. 1月至3月每月生产总量逐月增加,4,5两月每月生产量与3月持平
C. 1月至3月每月生产总量逐月增加,4、5两月均停止生产
D. 1月至3月每月生产总量不变,4、5两月均停止生产
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在每个小正方形的边长为 的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距 的另一个格点的运动称为一次跳马变换.例如,在 的正方形网格图形中(如图1),从点 经过一次跳马变换可以到达点 , , , 等处.现有 的正方形网格图形(如图2),则从该正方形的顶点 经过跳马变换到达与其相对的顶点 ,最少需要跳马变换的次数是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com