精英家教网 > 初中数学 > 题目详情
18.甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20km,那么甲用1h就能追上乙;如果乙先走1h,那么甲只用15min就能追上乙,设甲、乙二人的速度分别为xkm/h和ykm/h,则可列方程组为$\left\{\begin{array}{l}{x=y+20}\\{\frac{5}{4}y=\frac{1}{4}x}\end{array}\right.$.

分析 设甲的速度是x千米/时,乙的速度为y千米/时,根据如果乙先走20km,那么甲用1h就能追上乙;如果乙先走1h,那么甲只用15min就能追上乙列出方程组即可.

解答 解:设甲的速度是x千米/时,乙的速度为y千米/时,
由题意得,$\left\{\begin{array}{l}{x=y+20}\\{\frac{5}{4}y=\frac{1}{4}x}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{x=y+20}\\{\frac{5}{4}y=\frac{1}{4}x}\end{array}\right.$

点评 本题考查了二元一次方程组的应用,此题是一个行程问题,主要考查的是追及问题,根据路程=速度×时间即可列出方程组.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧,参加表演的女演员的身高(单位:cm)分别是:
甲团:163,164,164,165,165,165,166,167;
乙团:163,164,164,165,166,167,167,168.
那个芭蕾舞团女演员的身高更整齐?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.(1)探究一
如图,在?ABCD中,点E是BC边上的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若$\frac{AF}{BF}$=3,求$\frac{CD}{CG}$的值.
(2)探究二
如图,在?ABCD中,点E是BC边上的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若$\frac{AF}{BF}$=m(m>0),则$\frac{CD}{CG}$的值是$\frac{m}{2}$(用含m的代数式表示),试写出解答过程.
(3)探究三
如图,在?ABCD中,点E是BC边上的点,且$\frac{BE}{EC}=n(n>0)$,点F是线段AE上一点,BF的延长线交射线CD于点G,若$\frac{AF}{BF}$=m(m>0),则$\frac{CD}{CG}$的值是$\frac{mn}{n+1}$
(不写解答过程)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.发现:
(1)若干平面上三点能够确定一个圆,那么这三点所满足的条件是三点不在同一条直线上.
(2)我们判断四个点A,B,C,D(任意其中个三点不共线)是否在同一圆上时,一般地,先作过A,B,C三点的圆,然后判断点D是否在这个圆上,如果在,则这四个点共圆,如果不在,则不存在同时过这四个点的圆.
思考:
(1)如图1,∠ACB=∠ADB=90°,那么点A,B,C,D四点在(填“在”或“不在”)同一个圆上;
(2)如图2,如果∠ACB=∠ADB=a(a≠90°),(点C,D在AB的同侧),那么点D还在经过A,B,C三点的圆上吗?芳芳已经证明了点D不在圆内(如图所示),只要能够证明点D也不再圆外,就可以判断点D一定在圆上了,请你完成证明过程.
芳芳的证明过程:
如图3,过A,B,C三点作圆,圆心为O.假设点D在⊙O内,设AD的延长线交⊙O于点P,连接BP.易得∠APB=∠ACB.又由∠ADB是△BPD的外交,得到∠ADB>∠APB,因此∠ADB>∠ACB,这个结论与条件中的∠ACB=∠ADB矛盾,所以点D不在圆内.
应用:
如图4,在四边形ABCD中,连接AC,BD,∠CAD=∠CBD=90°,点P在CA的延长线上,连接DP.若∠ADP=∠ABD.求证:DP为Rt△ACD的外接圆的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图是由若干个粗细均匀的铁环最大限度地拉伸组成的链条.已知铁环粗0.8厘米,每个铁环长5厘米.设铁环间处于最大限度的拉伸状态.若要组成1.75米长的链条,则需要51个铁环.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.$\sqrt{16}$的平方根是(  )
A.2B.4C.-2或2D.-4或4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列图形中,是中心对称图形但不是轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.观察如图一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第4个图中共有点的个数比第3个图中共有点的个数多12个;第20个图中共有点的个数为631个.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧,分别交AB、AC于点M和N,再分别以M、N为圆心,大于$\frac{1}{2}$MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,下列结论:
①AD是∠BAC的平分线;②∠ADB=120°;③AD=BD;④DB=2CD.
其中正确的结论共有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

同步练习册答案