精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,,以长为一边作,取中点,连

求证:

________时,是等边三角形,并说明理由.

时,若,取中点,求的长.

【答案】(1)证明见解析;(2);(3)

【解析】

(1)由直角三角形斜边上的中线性质即可得出结论;

(2)证明A、B、C、D共圆,E是圆心,由圆周定理得出∠BEC=2∠CAB,∠AED=2∠DBA,得出∠BEC+∠AED=2×60°=120°,求出∠DEC=60°,即可;

(3)证出由直角三角形斜边上的中线性质即可得出结论.

证明:∵∠ACB=∠ADB=90°,的中点,

∴DE=AB,CE=AB,

∴DE=CE;

60°时,是等边三角形,理由如下:

∵∠ACB=∠ADB=90°,

∴A、B、C、D共圆,E是圆心,

∴∠BEC=2∠CAB,∠AED=2∠DBA,

∴∠CAB+∠DBA=60°,

∴∠BEC+∠AED=2×60°=120°,

∴∠DEC=60°,

∵DE=CE,

∴△DEC是等边三角形.

故答案为

解:同得:

的中点,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系内,点O为坐标原点,点Ax轴负半轴上,点B、C分别在x轴、y轴正半轴上,且OB=2OA,OBOC=OCOA=2.

(1)求点C的坐标;

(2)点P从点A出发以每秒1个单位的速度沿AB向点B匀速运动,同时点Q从点B出发以每秒3个单位的速度沿BA向终点A匀速运动,当点Q到达终点A时,点P、Q均停止运动,设点P运动的时间为t(t>0)秒,线段PQ的长度为y,用含t的式子表示y,并写出相应的t的范围;

(3)在(2)的条件下,过点P作x轴的垂线PM,PM=PQ,是否存在t值使点O为PQ中点? 若存在求t值并求出此时△CMQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从长度分别为3,5,6,9的四条线段中任取三条,能组成三角形的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在长方形中,cm,cm.现将其按下列步骤折叠:(1)将边向边折叠,使边落在边上,得到折痕,如图②;(2)沿折叠,交于点,如图③.则所得梯形的周长等于( )

A. cm B. cm

C. cm D. cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,平面直角坐标系中,△ABC的边AB在x轴上,∠C=60°,AC交y轴于点E,AC,BC的长是方程x2﹣16x+64=0的两个根且OA:OB=1:3,请解答下列问题:

(1)求点C的坐标;
(2)求直线EB的解析式;
(3)在x轴上是否存在点P,使△BEP为等腰三角形?若存在,请直接写出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,AB为直径,C为⊙O上一点,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形的对称轴上找点,使得均为等腰三角形,则满足条件的点_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AECD交于点M,AEBC交于点N.

(1)求证:AE=CD;

(2)求证:AE⊥CD;

(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有   (请写序号,少选、错选均不得分).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,以RtABC的三边分别为直径作半圆,若RtABC三边长分别为3,x,5,则图中阴影部分的面积为___________

查看答案和解析>>

同步练习册答案