精英家教网 > 初中数学 > 题目详情
9.在实数-$\frac{1}{3}$,$\sqrt{5}$,2.236,-$\root{3}{216}$,2-π,0.2020020002…,0.23,1-$\sqrt{2}$中无理数有$\sqrt{5}$,2-π,0.2020020002…,1-$\sqrt{2}$.

分析 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.

解答 解:无理数有:$\sqrt{5}$,2-π,0.2020020002…,1-$\sqrt{2}$共有4个.
故答案是:$\sqrt{5}$,2-π,0.2020020002…,1-$\sqrt{2}$.

点评 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.已知直线y=k(x-3)经过点(4,1),那么k=1;若另一直线l与直线y=k(x-3)平行,且它们之间的距离为1,则直线l的解析式为y=x-3-$\sqrt{2}$或y=x-3+$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,菱形ABCD的边长为2,∠ABC=45°,则点A的坐标为($\sqrt{2}$,$\sqrt{2}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,直线MN与直线PQ垂直相交于点O,点A在直线PQ上运动,点B在直线MN上运动.
(1)如图1,已知AE、BE分别是∠BAO和∠ABO的角平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,请说明理由,并求出∠AEB的大小.
(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,AD、BC的延长线交于点F.∠ADC的角平分线DE和∠BCD的角平分线CE相交于点E.
①点A、B在运动的过程中,∠F的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,请说明理由.
②点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.化简下列各式:
(1)(-2a+1)(2a+1)-2a(1-2a);
(2)$\frac{x^2}{{{x^2}-1}}÷({\frac{1-2x}{x-1}-x+1})$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知:抛物线y=ax2+bx+c(a≠0)的顶点M的坐标为(1,-2)与y轴交于点C(0,-$\frac{3}{2}$),与x轴交于A、B两点(A在B的左边).
(1)求此抛物线的表达式;
(2)点P是线段OB上一动点(不与点B重合),点Q在线段BM上移动且∠MPQ=45°,设线段OP=x,MQ=$\frac{\sqrt{2}}{2}$y1,求y1与x的函数关系式,并写出自变量x的取值范围;
(3)①在(2)的条件下是否存在点P,使△PQB是PB为底的等腰三角形?若存在试求点Q的坐标;若不存在说明理由.
②在(1)中抛物线的对称轴上是否存在点F,使△BMF是等腰三角形,若存在直接写出所有满足条件的点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.已知∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为y.
(1)求证:△A1AD1≌△CC1B;
(2)当x=1时,求证:四边形ABC1D1是菱形;
(3)求y关于x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解方程:
(1)x2-4x+1=0
(2)(x-3)2+4x(x-3)=0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.若规定a*b=5a+2b-1,则(-5)*6的值为-14.

查看答案和解析>>

同步练习册答案