【题目】在正方形ABCD中,点G在AB上,点H在BC上,且∠GDH=45°,DG、DH分别与对角线AC交于点E、F,则线段AE、EF、FC之间的数量关系为_______ .
【答案】
【解析】
把△DCH绕点D顺时针旋转90°至△DAH’,在GH上截取GM=AG,连接EM、FM,
证明△DH’G≌△DHG,从而证明MH=CH,再证明△AGE≌△MGE、△CHF≌△MHF,从而得到∠EMF=90°,即可证明结论.
证明:将△DCH绕点D顺时针旋转90°至△DAH’,在GH上截取GM=AG,连接EM、FM,
∵∠ADC=90°,∠GDH=45°,
∴∠ADG+∠CDH=45°,
∵∠ADH’=∠CDH,
∴∠ADG+∠ADH’=45°,即∠GDH’ =45°,
∴∠GDH=∠GDH’,
又DG=DG,DH=DH’,
∴△DH’G≌△DHG,
∴H’G=HG,∠DGH’=∠DGH,∠DHG =∠DH’G=∠DHC,
又∵GM=AG,
∴MH=AH’=CH,
∵GM=AG,∠DGH’=∠DGH,EG=EG,
∴△AGE≌△MGE,
∴AE=ME,∠EMG=∠EAG,
∵MH=CH,∠DHG =∠DHC,FH=FH,
∴△CHF≌△MHF,
∴CF=MF,∠FCH=∠FMH,
∵四边形ABCD为正方形,
∴∠EAG=∠FCH=45°,
∴∠EMG=∠FMH=45°,
∴∠EMF=90°,
∴,
∴.
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的顶点,,,规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位长度”为一次变换,如此这样,连续经过2019次变换后,正方形ABCD的对角线的交点M的坐标为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.
(1)求证:△ABE≌△ADF;
(2)试判断四边形AECF的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3-m,n)、D(, y2)、E(2,y3),则y1、y2、y3的大小关系是( ).
A. y1< y2< y3B. y1 < y3< y2C. y3< y2< y1D. y2< y3< y1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为元(为正整数),每月的销售量为条.
(1)直接写出与的函数关系式;
(2)设该网店每月获得的利润为元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=-x2+bx+c与x轴交于点A(-1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.
(1)求此抛物线的解析式.
(2)若点P在第一象限内的抛物线上,且S△PAB=S△OEB,求点P的横坐标.
(3)将△OBE以点B为中心顺时针旋转,旋转角等于2∠OBC,设点E的对应点为点E',点O的对应点为点O',求直线O'E'与抛物线的交点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明将小球沿地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度()与它的飞行时间()满足二次函数关系,与的几组对应值如下表所示:
() | … | |||||
() | … |
(1)求关于的函数解析式(不要求写的取值范围)
(2)问:小球的飞行高度能否达到?请说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(,y1),(,y2)是抛物线上两点,则y1<y2,其中正确的结论有( )个
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在中,,分别为边上的两动点,且在运动过程中保持,为的对角线.
(1)如图①,若,
图①
①当点与点重合时,探索的值;
②当点与点不重合时,探索的值;
(2)如图②,参考(1)研究方法,若,
图②
①当点与点重合时,探索的值;
②当点与点不重合时,探索的值;
(3)如图③,参考(1)(2)研究方法,若时,试探索是否存在常数,使得,若存在,请直接写出的值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com