分析 (1)连结OC,根据切线的性质得OC⊥AB,再根据含30度的直角三角形三边的关系得到OC=$\frac{1}{2}$OB=3cm;
(2)利用扇形面积公式和S阴=S△OBC-S扇形OCD进行计算即可.
解答 解:(1)连接OC,则OC⊥AB.
在Rt△OBC中,![]()
∵∠B=30°,OA=OB=6cm,
∴OC=$\frac{1}{2}$OB=3cm,
∴⊙O的半径为3cm;
(2)在Rt△OBC中,∠B=30°,
∴∠BOC=60°,
∴BC=$\sqrt{O{B}^{2}-O{C}^{2}}$=3$\sqrt{3}$,
∴S阴影=S△OBC-S扇形OCD=$\frac{1}{2}$BC•OC-$\frac{60×π×{3}^{2}}{360}$,
=$\frac{1}{2}$×3$\sqrt{3}$×3-$\frac{3}{2}π$,
=$\frac{9\sqrt{3}}{2}-\frac{3}{2}π$.
点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了扇形的面积公式和含30度的直角三角形三边的关系.
科目:初中数学 来源: 题型:选择题
| A. | 100m | B. | 2400m | C. | 400$\sqrt{3}$m | D. | 1200$\sqrt{3}$m |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com