分析 (1)如图①中,作BF平分∠DBC交AC、CD于E、F,根据题意可以证明∠BDA=∠BAD得BA=BD=BC.
(2)在图②中作DR∥BG交AC于R,利用平行成比例即可解决
解答 证明:(1)如图①中,
作BF平分∠DBC交AC、CD于E、F,AC和BD交于点G.
∵∠DBC=2∠DAG,
∴∠DAG=∠GBE,
∵∠DAG+∠AGD+∠ADG=∠GBE+∠BGE+∠GEB=180°,∠AGD=∠BGE,
∴∠ADG=∠BEG,
∵∠BEG=∠BCE+∠EBC,∠BAD=∠BAC+∠DAG,
∵AB=BC,
∴∠BAC=∠BCA,
∵∠DAG=∠EBC,
∴∠BAD=∠BDA,
∴BD=BA=BC即BD=BC.
(2)结论:CF=$\frac{5}{8}$BD.
理由如下:在图②中作DR∥BG交AC于R.
∵AB=BC,∠BAC=60°,![]()
∴△ABC是等边三角形,
∴BD=BC=AC=AB,
∵BG平分∠ABD,
∴BG⊥AD,
∴AE=ED,
∵EF∥RD,
∴AF=FR,
∵EG=4EF,设EF=a,则EG=4a,FG=5a,RD=2EF=2a,
∴$\frac{RD}{FG}=\frac{RC}{CF}=\frac{2a}{5a}$=$\frac{2}{5}$,
设CR=2k,CF=5k,则RF=AF=3k,AC=8k,
∴$\frac{CF}{BD}$=$\frac{5k}{8k}$=$\frac{5}{8}$,
∴CF=$\frac{5}{8}$BD.
点评 本题考查了等腰三角形的性质和判定、等边三角形的判定和性质、平行成比例的性质等知识,灵活运用这些知识是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4 | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{3\sqrt{2}}{2}$ | D. | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
| -1 | 3 | a | b | c | 3 | -4 | … |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com