【题目】如图,二次函数y=ax2+bx+c的图象与x轴相交于A、B两点,C(m,﹣3)是图象上的一点,且AC⊥BC,则a的值为( )
A.2B.C.3D.
【答案】D
【解析】
在直角三角形ABC中,利用勾股定理AD2+DC2+CD2+BD2=AB2,即m2﹣m(x1+x2)+18+x1x2=0;然后根据根与系数的关系即可求得a的值.
过点C作CD⊥AB于点D.
∵AC⊥BC,
∴AD2+DC2+CD2+BD2=AB2,
设ax2+bx+c=0的两根分别为x1与x2(x1≤x2),
∴A(x1,0),B(x2,0).
依题意有(x1﹣m)2+9+(x2﹣m)2+9=(x1﹣x2)2,
化简得:m2﹣m(x1+x2)+9+x1x2=0,
∴m2m+90,
∴am2+bn+c=﹣9a.
∵(m,﹣3)是图象上的一点,
∴am2+bm+c=﹣3,
∴﹣9a=﹣3,
∴a.
故选:D.
科目:初中数学 来源: 题型:
【题目】在ABCD中,∠D=30°,AB<AD.
(1)在AD边上求作一点P,使点P到边AB,BC的距离相等;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)的条件下,连接BP,若AB=2,求△ABP的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD的周长为22m,对角线AC、BD交于点O,过点O与AC垂直的直线交边AD于点E,则△CDE的周长为( )
A. 8cmB. 9cmC. 10cmD. 11cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线与直线交于两点,且两点之间的抛物线上总有两个纵坐标相等的点.
(1)求证:;
(2)过作轴的垂线,交直线于,,且当,,三点共线时,轴.
①求的值:
②对于每个给定的实数,以为直径的圆与直线总有公共点,求的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:
原进价(元/张) | 零售价(元/张) | 成套售价(元/套) | |
餐桌 | a | 270 | 500元 |
餐椅 | a﹣110 | 70 |
已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.
(1)求表中a的值;
(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?
(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,但销售价格保持不变.商场购进了餐桌和餐椅共200张,应怎样安排成套销售的销售量(至少10套以上),使得实际全部售出后,最大利润与(2)中相同?请求出进货方案和销售方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,∠A=60°,AB=6,AC=4.
(1)用尺规作△ABC的外接圆O;
(2)求△ABC的外接圆O的半径;
(3)求扇形BOC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图AM∥BN,C是BN上一点, BD平分∠ABN且过AC的中点O,交AM于点D,DE⊥BD,交BN于点E.
(1)求证:△ADO≌△CBO.
(2)求证:四边形ABCD是菱形.
(3)若DE = AB = 2,求菱形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数学活动课上,王老师出示一道数学题目:“在平面直角坐标系中,当为何值时,抛物线与直线段有唯一公共点或有两个公共点?”某学习小组经探究得到以下四个结论:
①当时,有唯一公共点;
②若为整数,则仅当的值为4或5或6或7时,才有唯一公共点;
③若为整数,则当的值为1或2或3时,有两个公共点;
④当时,有两个公共点.其中正确的结论有( )
A.①②④B.①②③C.①③D.①④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点在反比例函数的图象上,过点作轴,垂足为,直线经过点,与轴交于点,且,.
(1)求反比例函数和一次函数的表达式;
(2)直接写出关于的不等式的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com