【题目】如图,EF、BG、DH 都垂直于 FH,AE⊥AB 且 AE=AB,BC⊥CD 且 BC=CD,请按照图中所标注的数据,计算图中阴影部分的面积 S 是_____.
【答案】50
【解析】
由 AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而 AE=AB,∠
EFA=∠AGB,由此可以证明△EFA≌△ABG,所以 AF=BG,AG=EF; 同理证得△BGC≌△DHC,GC=DH,CH=BG.故 FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.
∵AE⊥AB 且 AE=AB,EF⊥FH,BG⊥FH
∴∠EAB=∠EFA=∠BGA=90°,
∵∠EAF+∠BAG=90°,∠ABG+∠BAG=90°
∴∠EAF=∠ABG,
∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG
∴△EFA≌△ABG(AAS)
∴AF=BG,AG=EF.
同理证得△BGC≌△DHC(AAS)得 GC=DH,CH=BG. 故 FH=FA+AG+GC+CH=3+6+4+3=16,
故 S=(6+4)×16﹣3×4﹣6×3=50.
故答案为:50.
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,以A为圆心,AB为半径画弧,交AD于F,再分别以B、F为圆心,大于 BF的长为半径画弧,两弧相交于点G,若BF=6,AB=5,则AE的长为( )
A.11
B.6
C.8
D.10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.
⑴若∠BAE=40°,求∠C的度数;
⑵若△ABC周长13cm,AC=6cm,求DC长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):
(1)①若∠DCE=45°,则∠ACB的度数为 ;
②若∠ACB=140°,求∠DCE的度数;
(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.
(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由);若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,∠ACB=90°,AC=BC,AE 是 BC 边的中线,过点C 作 CF⊥AE,垂足为点 F,过点 B 作 BD⊥BC 交 CF 的延长线于点 D.
(1)试证明:AE=CD;
(2)若 AC=12cm,求线段 BD 的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,以BC为直径的圆交AC于点D,∠ABD=∠ACB.
(1)求证:AB是圆的切线;
(2)若点E是BC上一点,已知BE=4,tan∠AEB= ,AB:BC=2:3,求圆的直径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y= 的图象经过二次函数y=ax2+bx图象的顶点(﹣ ,m)(m>0),则有( )
A.a=b+2k
B.a=b﹣2k
C.k<b<0
D.a<k<0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com