【题目】近年来,体育分数在中招考试中占分比重越来越大,不少家长、考生也越来越重视;某中学计划购买一批足球、跳绳供学生们考前日常练习使用,负责此次采购的老师从商场了解到:购买7个足球和4条跳绳共需510元;购买3个足球比购买5条跳绳少50元.
(1)求足球和跳绳的单价;
(2)按学校规划,准备购买足球和跳绳共200件,且足球的数量不少于跳绳的数量的 ,请设计出最省钱的购买方案,并说明理由.
【答案】(1)足球的单价为50元/个,跳绳的单价为40元/条;(2)最省钱的购买方案是:购买足球67个,跳绳133条.
【解析】
(1)设足球的单价为x元/个,跳绳的单价为y元/条,根据题意可列出二元一次方程组,解方程即可得出答案.
(2)设购买足球m个,总费用为w元,则购买跳绳(200﹣m)条,依题意,得: .由足球的数量不少于跳绳的数量的,
可得: ,解得: .再利用一次函数的性质即可解决最值问题.
解:(1)设足球的单价为x元/个,跳绳的单价为y元/条,
依题意,得: ,
解得: .
答:足球的单价为50元/个,跳绳的单价为40元/条.
(2)设购买足球m个,总费用为w元,则购买跳绳(200﹣m)条,
依题意,得: .
∵足球的数量不少于跳绳的数量的,
∴ ,
解得: .
∵m为整数,
∴m≥67.
∵10>0,
∴w值随m值的增大而增大,
∴当m=67时,w取得最小值,此时200﹣m=133.
答:最省钱的购买方案是:购买足球67个,跳绳133条.
科目:初中数学 来源: 题型:
【题目】如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠B=30°
(1)在BC上作出点D,使它到A,B两点的距离相等(用尺规作图法,保留作图痕迹,不要求写作法)
(2)若BD=6,求CD长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:
到超市的路程(千米) | 运费(元/斤千米) | |
甲养殖场 | 200 | 0.012 |
乙养殖场 | 140 | 0.015 |
(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?
(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在四边形纸片ABCD中,AB=12,CD=2,AD=BC=6,∠A=∠B.现将纸片沿EF折叠,使点A的对应点A'落在AB边上,连接A'C.若△A'BC恰好是以A'C为腰的等腰三角形,则AE的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】滴滴快车是一种便捷的出行工具,某地区计价规则如表:
计费项目 | 里程费 | 时长费 | 远途费 |
单价 | 1.8元/公里 | 0.3元/分钟 | 0.8元/公里 |
注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元. |
小明与小亮各自乘坐滴滴快车,行车里程分别为6公里与8公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差_____分钟.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2+bx+4与x轴交于A,B两点,与y轴交于点C.直线y=2经过抛物线上两点D,E.已知点D,E的横坐标分别为x1,x2且满足x1+x2=3,直线BC的表达式为y=﹣x+n.
(1)求n的值及抛物线的表达式;
(2)设点Q是直线DE上一动点,问:点Q在什么位置上时,△QOB的周长最小?求出点Q的坐标及△QOB周长的最小值;
(3)如图2,M是线段OB上的一个动点,过点M作垂直于x轴的直线与直线BC和抛物线分别交于点P,N.若点F是直线BC上一个动点,当点P恰好是线段MN的中点时,在坐标平面内是否存在点G,使以点G,F,P,M为顶点的四边形是菱形?若存在,请直接写出点G的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,D,E为⊙O上位于AB异侧的两点,连结BD并延长至点C,使得CD=BD,连结AC交⊙O于点F,连接BE,DE,DF.
(1)若∠E=35°,求∠BDF的度数.
(2)若DF=4,cos∠CFD=,E是的中点,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2﹣x+c经过A(﹣2,0),B(0,2)两点,动点P,Q同时从原点出发均以1个单位/秒的速度运动,动点P沿x轴正方向运动,动点Q沿y轴正方向运动,连接PQ,设运动时间为t秒
(1)求抛物线的解析式;
(2)当BQ=AP时,求t的值;
(3)随着点P,Q的运动,抛物线上是否存在点M,使△MPQ为等边三角形?若存在,请求出t的值及相应点M的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com