精英家教网 > 初中数学 > 题目详情

【题目】在矩形ABCD中, =a,点G,H分别在边AB,DC上,且HA=HG,点E为AB边上的一个动点,连接HE,把△AHE沿直线HE翻折得到△FHE.

(1)如图1,当DH=DA时,填空:∠HGA=度;
(2)如图1,当DH=DA时,若EF∥HG,求∠AHE的度数,并求此时的最小值;
(3)如图3,∠AEH=60°,EG=2BG,连接FG,交边DC于点P,且FG⊥AB,G为垂足,求a的值.

【答案】
(1)45°
(2)

解:分两种情况讨论:

第一种情况:

∵∠HAG=∠HGA=45°;

∴∠AHG=90°,

由折叠可知:∠HAE=∠F=45°,∠AHE=∠FHE,

∵EF∥HG,

∴∠FHG=∠F=45°,

∴∠AHF=∠AHG﹣∠FHG=45°,

即∠AHE+∠FHE=45°,

∴∠AHE=22.5°,

此时,当B与G重合时,a的值最小,最小值是2;

第二种情况:

∵EF∥HG,

∴∠HGA=∠FEA=45°,

即∠AEH+∠FEH=45°,

由折叠可知:∠AEH=∠FEH,

∴∠AEH=∠FEH=22.5°,

∵EF∥HG,

∴∠GHE=∠FEH=22.5°,

∴∠AHE=90°+22.5°=112.5°,

此时,当B与E重合时,a的值最小,

设DH=DA=x,则AH=GH= x,

在Rt△AHG中,∠AHG=90°,由勾股定理得:

AG= AH=2x,

∵∠AEH=∠GHE=22.5°,

∴GH=GE= x,

∴AB=AE=2x+ x,

∴a的最小值是 =2+ .


(3)

解:如图:过点H作HQ⊥AB于Q,

在矩形ABCD中,∠D=∠DAQ=90°,

∴∠D=∠DAQ=∠AQH=90°,

∴四边形DAQH为矩形,

∴AD=HQ,

设GB=x,则EG=2x,

由折叠可知:∠AEH=∠FEH=60°,

∴∠FEG=60°,

在Rt△EFG中,EG=EF×cos60°,EF=4x,

∴AG=6x

∵HA=HG,HQ⊥AB,

∴AQ=GQ=3x

∴EQ=x

在Rt△HQE中,

∵∠AEH=60°

∴HQ= x

∴a= =


【解析】解:(1)①∵四边形ABCD是矩形,
∴∠ADH=90°,
∵DH=DA,
∴∠DAH=∠DHA=45°,
∴∠HAE=45°,
∵HA=HG,
∴∠HAE=∠HGA=45°;
所以答案是:45°;
·(3)另解:
如图:过点H作HQ⊥AB于Q,则∠AQH=∠GOH=90°,
则∠AQH=∠GQH=90°,
在矩形ABCD中,∠D=∠DAQ=90°,
∴∠D=∠DAQ=∠AQH=90°,
∴四边形DAQH为矩形,
∴AD=HQ,
设AD=x,GB=y,则HQ=x,EG=2y,
由折叠可知:∠AEH=∠FEH=60°,
∴∠FEG=60°,
在Rt△EFG中,EG=EF×cos60°,则EF=4y,
在Rt△HQE中,EQ= = x,
∴QG=QE+EG= x+2y,
∵HA=HG,HQ⊥AB,
∴AQ=GQ= x+2y,
∴AE=AQ+QE= x+2y,
由折叠可知:AE=EF,
x+2y=4y,
∴y= x,
∴AB=2AQ+GB=2( x+2y)+y= x,
∴a= =
【考点精析】本题主要考查了含30度角的直角三角形和矩形的性质的相关知识点,需要掌握在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;矩形的四个角都是直角,矩形的对角线相等才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知方程 ,且关于x的不等式组 只有4个整数解,那么b的取值范围是(
A.﹣1<b≤3
B.2<b≤3
C.8≤b<9
D.3≤b<4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,CD为AB边上的中线,点E、F分别在线段CD、AD上,且 .点G是EF的中点,射线DG交AC于点H.

(1)求证:△DFE∽△DAC;
(2)请你判断点H是否为AC的中点?并说明理由;
(3)若将△ADH绕点D顺时针旋转至△A′DH′,使射线DH′与射线CB相交于点M(不与B,C重合.图2是旋转后的一种情形),请探究∠BMD与∠BDA′之间所满足的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市民营经济持续发展,2015年城镇民营企业就业人数突破20万.为了解城镇民营企业员工每月的收入状况,统计局对全市城镇民营企业员工2015年月平均收入随机抽样调查,将抽样的数据按“2000元以内”、“2000元~4000元”、“4000元~6000元”和“6000元以上”分为四组,进行整理,分别用A,B,C,D表示,得到下列两幅不完整的统计图.

由图中所给出的信息解答下列问题:
(1)本次抽样调查的员工有人,在扇形统计图中x的值为 , 表示“月平均收入在2000元以内”的部分所对应扇形的圆心角的度数是
(2)将不完整的条形图补充完整,并估计我市2015年城镇民营企业20万员工中,每月的收入在“2000元~4000元”的约多少人?
(3)统计局根据抽样数据计算得到,2016年我市城镇民营企业员工月平均收入为4872元,请你结合上述统计的数据,谈一谈用平均数反映月收入情况是否合理?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读以下材料,并按要求完成相应的任务.

几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉,生活中还有一种特殊的四边形﹣﹣筝形.所谓筝形,它的形状与我们生活中风筝的骨架相似.
定义:两组邻边分别相等的四边形,称之为筝形,如图,四边形ABCD是筝形,其中AB=AD,CB=CD
判定:①两组邻边分别相等的四边形是筝形
②有一条对角线垂直平分另一条对角线的四边形是筝形
显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点

如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:
如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:
(1)请说出筝形和菱形的相同点和不同点各两条;
(2)请仿照图1的画法,在图2所示的8×8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:
①顶点都在格点上;
②所设计的图案既是轴对称图形又是中心对称图形;
③将新图案中的四个筝形都图上阴影(建议用一系列平行斜线表示阴影).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某区为了解七年级学生开展跳绳活动的情况,随机调查了该区部分学校七年级学生1分钟跳绳的次数,将调查结果进行统计,下面是根据调查数据制作的统计图表的一部分.

分组

次数x(个)

人数

A

0≤x<120

24

B

120≤x<130

72

C

130≤x<140

D

x≥140

根据以上信息,解答下列问题:
(1)在被调查的学生中,跳绳次数在120≤x<130范围内的人数为人,跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为%;
(2)本次共调查了名学生,其中跳绳次数在130≤x<140范围内的人数为人,跳绳次数在x≥140范围内的人数占被调查人数的百分比为%;
(3)该区七年级共有4000名学生,估计该区七年级学生1分钟跳绳的次数不少于130个的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系第一象限内,直线y=x与直线y=2x的内部作等腰Rt△ABC,是∠ABC=90°,边BC∥x轴,AB∥y轴,点A(1,1)在直线y=x上,点C在直线y=2x上:CB的延长线交直线y=x于点A1 , 作等腰Rt△A1B1C1 , 是∠A1B1C1=90°,B1C1∥x轴,A1B1∥y轴,点C1在直线y=2x上…按此规律,则等腰Rt△AnBnCn的腰长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+bx+3与x轴交于点A(1,0)和点B,与y轴交于点C.

(1)求抛物线的解析式.
(2)直线y=kx+3k经过点B,与y轴的负半轴交于点D,点P为第二象限内抛物线上一点,连接PD,射线PD绕点P顺时针旋转与线段BD交于点E,且∠EPD=2∠PDC,∠EPD的平分线交线段BD于点H,∠BEP+∠BDP=90°
①若四边形PHDC是平行四边形,求点P的坐标;
②过点E作EF⊥PD,交PD于点G,交y轴于点F,已知PF=3 ,求直线PF的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB=5,AD=12,将矩形ABCD沿直线l向右翻滚两次至如图所示位置,则点B所经过的路线长是 (结果不取近似值).

查看答案和解析>>

同步练习册答案