精英家教网 > 初中数学 > 题目详情

【题目】某商店将进价为100元的某商品按120元的价格出售,可卖出300个;若商店在120元的基础上每涨价1元,就要少卖10个,而每降价1元,就可多卖30个.

(1)求所获利润y (元)与售价x(元)之间的函数关系式;

(2)为获利最大,商店应将价格定为多少元?

(3)为了让利顾客,且获利最大,商店应将价格定为多少元?

【答案】(1);(2)售价定为115元获得最大为6750元;(3)115

【解析】

(1)以120元为基础,当涨价时,大于120元,当降价时,小于120元,利用每个商品的利润×卖出数量=总利润分别写出函数关系式即可

(2)利用配方法求得两个函数解析式的最大值,比较得出答案;

(3)分别求出函数最值进而得出答案.

解:(1)当x>120时,

y1=﹣10x2+2500x﹣150000;

100<x<120时,

y2=﹣30x2+6900x﹣390000,

(2)y1=﹣10x2+2500x﹣150000=﹣10(x﹣125)2+6250;

y2=﹣30x2+6900x﹣390000=﹣30(x﹣115)2+6750;

6750>6250,

∴当售价定为115元时,获得最大为6750元;

(3)由(2)可知,

当涨价x=5(元)时,所获利润y1的最大值=6250(元);

当降价x=5(元)时,所获利润y2的最大值=6750(元).

∴为获利最大,应降价5元,即将价格定为115元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC 中,∠C=90°,∠B=30°,以点 A 为圆心,任意长为半径画弧分别交 ABAC 于点M N,再分别以 MN 为圆心,大于 的长为半径画弧,两弧交于点 P,连接 AP 并延长交 BC 于点D,则下列说法中:①AD 是∠BAC 的平分线;②点 D 在线段 AB 的垂直平分线上;③SDACSABC=12.正确的是( )

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB=10,BC=12,E为DC的中点,连接BE,作AFBE,垂足为F

(1)求证:BECABF

(2)求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为等边三角形,相交于点于点

(1)求证:

(2)求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知 ABC的三个顶点的坐标分别为A(-1,1), B(-3,1),C(-1,4).

①画出ABC关于y轴对称的A1B1C1

②将ABC绕着点B顺时针旋转90°后得到A2BC2请在图中画出A2BC2并求出线段BC旋转过程中所扫过的面积(结果保留

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,花丛中有一路灯杆AB. 在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5. 如果小明的身高为1.7米,求路灯杆AB的高度(精确到0.1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC内接于⊙O,DOC的延长线上,B=CAD=30°.

(1)AD是⊙O的切线吗?为什么?

(2)ODAB,BC=5,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们新定义一种三角形:两边平方和等于第三边平方的4倍的三角形叫做常态三角形例如:某三角形三边长分别是568,因为,所以这个三角形是常态三角形.

(1)若△ABC三边长分别是24,则此三角形 常态三角形(不是”);

(2)如图,RtABC中,∠ACB=90°BC=6,点DAB的中点,连接CDCD=AB 若△ACD是常态三角形,求△ABC的面积;

(3)RtABC是常态△,斜边是,则此三角形的两直角边的和= .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,ACBC,∠ACB90°,点DAB上,点EBC上,且ADBEBDAC

1)求证:CDED

2)直接写出图中所有是∠ACD2倍的角.

查看答案和解析>>

同步练习册答案