精英家教网 > 初中数学 > 题目详情

【题目】如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M和点N.

(1)请你判断OM和ON的数量关系,并说明理由;
(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.

【答案】
(1)解:∵四边形ABCD是菱形,

∴AD∥BC,AO=OC,

∴OM=ON


(2)解:∵四边形ABCD是菱形,

∴AC⊥BD,AD=BC=AB=6,

∴BO= =2

∵DE∥AC,AD∥CE,

∴四边形ACED是平行四边形,

∴DE=AC=8,

∴△BDE的周长是:

BD+DE+BE

=BD+AC+(BC+CE)

=4 +8+(6+6)

=20

即△BDE的周长是20


【解析】(1)根据四边形ABCD是菱形,判断出AD∥BC,AO=OC,即可推得OM=ON.(2)首先根据四边形ABCD是菱形,判断出AC⊥BD,AD=BC=AB=6,进而求出BO、BD的值是多少;然后根据DE∥AC,AD∥CE,判断出四边形ACED是平行四边形,求出DE=AC=6,即可求出△BDE的周长是多少.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2bx-3x轴交于点A(1,0)和点B,与y轴交于点C,且其对称轴lx1,点P是抛物线上BC之间的一个动点(点P不与点BC重合).

(1)直接写出抛物线的解析式;

(2)小唐探究点P的位置时发现:当动点N在对称轴l上时,存在PBNB,且PBNB的关系,请求出点P的坐标;

(3)是否存在点P使得四边形PBAC的面积最大?若存在,请求出四边形PBAC面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式:2(x+1)>3x﹣1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知O的半径为2,AB为直径,CD为弦,AB与CD交于点M,将弧CD沿着CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,链接PC。

1求CD的长;

2求证:PC是O的切线;

3点G为弧ADB的中点,在PC延长线上有一动点Q,连接QG交AB于点E,交弧BC于点FF与B、C不重合。问GEGF是否为定值?如果是,求出该定值;如果不是,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板按如图所示的位置摆放,A、B、D三点在同一直线上,EF∥AD,∠CAB=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8.

(1)试求点F到AD的距离.
(2)试求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】

如图,点BFCE在直线l上(FC之间不能直接测量),点ADl异侧,测得AB=DEAC=DFBF=EC.

1)求证:ABC≌△DEF

2)指出图中所有平行的线段,并说明理由.

21题图

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A→…的规律紧绕在四边形ABCD的边上.则细线的另一端所在位置的点的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣x2+2x的开口方向向(填“上”或“下”)

查看答案和解析>>

同步练习册答案