分析 (1)由等边三角形可得其对应线段相等,对应角相等,进而可由SAS得到△CAN≌△CMB,结论得证;
(2)由(1)中的全等可得∠CAN=∠CMB,进而得出∠MCF=∠ACE,由ASA得出△CAE≌△CMF,即CE=CF,又ECF=60°,所以△CEF为等边三角形.
解答 证明:(1)∵△ACM,△CBN是等边三角形,
∴AC=MC,BC=NC,∠ACM=∠NCB=60°,
∴∠ACM+∠MCN=∠NCB+∠MCN,即∠ACN=∠MCB,
在△CAN和△CMB中,
∵$\left\{\begin{array}{l}{AC=MC}\\{∠ACN=∠MCB}\\{NC=BC}\end{array}\right.$,
∴△CAN≌△CMB(SAS);
(2)∵△CAN≌△CMB,
∴∠CAN=∠CMB,
又∵∠MCF=180°-∠ACM-∠NCB=180°-60°-60°=60°,
∴∠MCF=∠ACE,
在△CAE和△CMF中,
∵$\left\{\begin{array}{l}{∠CAE=∠CMF}\\{CA=CM}\\{∠ACE=∠MCF}\end{array}\right.$,
∴△CAE≌△CMF(ASA),
∴CE=CF,
∴△CEF为等腰三角形,
又∵∠ECF=60°,
∴△CEF为等边三角形.
点评 本题主要考查了全等三角形的判定及性质以及等边三角形的判定问题,能够掌握全等三角形的判定方法是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3.5×10-5 | B. | 3.5×10-4 | C. | 0.35×10-4 | D. | 3.5×10-6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com