精英家教网 > 初中数学 > 题目详情
12.如图,在x轴的正半轴上依次截取OA1=A1A2=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数的y=$\frac{2}{x}$(x≠0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P4A4、A4P5A5并设其面积分别为S1、S2、S3、S4、S5,则S5的值为$\frac{1}{5}$,以此类推Sn=$\frac{1}{n}$(n≥1的整数)

分析 根据反比例函数y=$\frac{k}{x}$中k的几何意义再结合图象即可解答.

解答 解:∵过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,S=$\frac{1}{2}$|k|.
∴S1=1,S△OA2P2=1,
∵OA1=A1A2
∴$\frac{1}{2}$S△OA2P2=$\frac{1}{2}$,
同理可得,S2=$\frac{1}{2}$S1=$\frac{1}{2}$,S3=$\frac{1}{3}$S1=$\frac{1}{3}$,S4=$\frac{1}{4}$S1=$\frac{1}{4}$,S5=$\frac{1}{5}$S1=$\frac{1}{5}$.
以此类推,Sn=$\frac{1}{n}$.
故答案是:$\frac{1}{5}$,$\frac{1}{n}$.

点评 主要考查了反比例函数y=$\frac{k}{x}$中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=$\frac{1}{2}$|k|.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.一类产品进价6元,标价12.5元,打8折出售,每天可卖100件.现在市场上每降1元可多卖40件.
①若每天的利润达到420元,则必须降多少元?
②降价多少元时,利润达到最高,并求此时的利润.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带③去,这样做根据的三角形全等判定方法为(  )
A.S.A.S.B.A.S.A.C.A.A.S.D.S.S.S.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.下列各式-3x,$\frac{x+y}{x-y}$,$\frac{xy-y}{3}$,$\frac{3}{10}$,$\frac{2}{5+y}$,$\frac{3}{x}$,$\frac{x}{4xy}$中,分式的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.当m=-3时,方程$\frac{m}{x-1}$=2+$\frac{3}{1-x}$有增根,增根是x=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,直线y=kx+2k(k≠0)与x轴交于点B,与双曲线y=$\frac{4}{x}$交于点A、C,其中点A在第一象限,点C在第三象限.
(1)求B点的坐标;
(2)若S△AOB=2,求A点的坐标;
(3)若C(-4,-1)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围;
(4)在(2)的条件下,在y轴上是否存在点P,使△AOP是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,已知AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,DF=DC,则∠ABC的大小是(  )
A.30度B.45度C.60度D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.解下列不等式(组),并把解集在数轴上表示出来.
(1)$\frac{2x-4}{3}$>$\frac{3x-1}{2}$                      
(2)$\left\{\begin{array}{l}{5x-1<3(x+1)}\\{\frac{x-1}{2}≥1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.化简($\sqrt{3}$-2)2015•($\sqrt{3}$+2)2016的结果为(  )
A.-1B.$\sqrt{3}$-2C.$\sqrt{3}$+2D.-$\sqrt{3}$-2

查看答案和解析>>

同步练习册答案