6.将4个数,a,b,c,d排成两行、两列,两边各加一条竖线,记成$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$,定义$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,上述记号叫做二阶行列式,若$|\begin{array}{l}{x+1}&{1-x}\\{1-x}&{x+1}\end{array}|$=8,求$\frac{1}{2}$x[(2x+3)2-(2x-3)2]÷(2x)的值.
分析 先求出x的值,再算乘法,合并同类项,算乘法和除法,最后代入求出即可.
解答 解:$|\begin{array}{l}{x+1}&{1-x}\\{1-x}&{x+1}\end{array}|$=8,
(x+1)(x+1)-(1-x)(1-x)=8,
解得:x=2,
$\frac{1}{2}$x[(2x+3)2-(2x-3)2]÷(2x)
=$\frac{1}{2}$x[4x2+12x+9-4x2+12x-9]÷(2x)
=12x2÷(2x)
=6x
=6×2
=12.
点评 本题考查了整式的混合运算和求值的应用,能根据整式的运算法则进行化简是解此题的关键,难度适中.