精英家教网 > 初中数学 > 题目详情

【题目】一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:

售价x(元/千克)

50

60

70

80

销售量y(千克)

100

90

80

70


(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?

【答案】
(1)

解:设y与x的函数关系式为y=kx+b(k≠0),根据题意得

解得

故y与x的函数关系式为y=﹣x+150;


(2)

解:根据题意得

(﹣x+150)(x﹣20)=4000,

解得x1=70,x2=100>90(不合题意,舍去).

故该批发商若想获得4000元的利润,应将售价定为70元;


(3)

解:w与x的函数关系式为:

w=(﹣x+150)(x﹣20)

=﹣x2+170x﹣3000

=﹣(x﹣85)2+4225,

∵﹣1<0,

∴当x=85时,w值最大,w最大值是4225.

∴该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为4225元.


【解析】(1)根据图表中的各数可得出y与x成一次函数关系,从而结合图表的数可得出y与x的关系式.(2)根据想获得4000元的利润,列出方程求解即可;(3)根据批发商获得的总利润w(元)=售量×每件利润可表示出w与x之间的函数表达式,再利用二次函数的最值可得出利润最大值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,已知ABC≌△FDE,若A点的坐标为(a,1),BCx轴,B点的坐标为(b,-2),DE两点都在y轴上,则F点到y轴的距离为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是反比例函数y1= (x>0)图象上一点,过点A作x轴的平行线,交反比例函数y2= (x>0)的图象于点B,连接OA、OB,若△OAB的面积为2,则k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:射线OP就是∠BOA的角平分线.他这样做的依据是(  )

A. 角的内部到角的两边的距离相等的点在角的平分线上

B. 角平分线上的点到这个角两边的距离相等

C. 三角形三条角平分线的交点到三条边的距离相等

D. 以上均不正确

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,点A的坐标为(0,1),点B的坐标为(0,﹣2),反比例函数y= 的图象经过点C,一次函数y=ax+b的图象经过A、C两点.

(1)求反比例函数与一次函数的解析式;
(2)求反比例函数与一次函数的另一个交点M的坐标;
(3)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y= 的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是( )
A.(﹣6,1)
B.(1,6)
C.(2,﹣3)
D.(3,﹣2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A处观测到灯塔C在北偏西60°方向上,航行1小时到达B处,此时观察到灯塔C在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离(结果精确到1海里,参考数据: ≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是( )

A.掷一枚正六面体的骰子,出现1点的概率
B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率
C.抛一枚硬币,出现正面的概率
D.任意写一个整数,它能被2整除的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD是∠ABC的平分线,DECB,交AB于点EA=45°,BDC=60°.BDE各内角的度数.

查看答案和解析>>

同步练习册答案