【题目】为了庆祝改革开放40周年,展开改革开放的辉煌成就,某中学举办师生诗词创作大赛,从参赛作品中选出20篇优秀作品,原计划一等奖3篇,二等奖5篇,三等奖12篇,后经校长会研究决定,在该项奖励总奖金不变的情况下,各等级获奖篇数实际调整为:一等奖4篇,二等奖6篇,三等奖10篇,调整后一等奖每篇奖金降低10元,二等奖每篇奖金降低20元,三等奖每篇奖金降低30元,调整前一等奖金每篇奖金比三等奖每篇奖金多320元,则调整后一等奖每篇比二等奖每篇奖金多___________元。
科目:初中数学 来源: 题型:
【题目】某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.
⑴请你补全这个输水管道的圆形截面;
⑵若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线l:y=x+与x轴负半轴、y轴正半轴分别相交于A、C两点,抛物线y=﹣x2+bx+c经过点B(1,0)和点C.
(1)求抛物线的解析式;
(2)已知点Q是抛物线y=﹣x2+bx+c在第二象限内的一个动点.
①如图1,连接AQ、CQ,设点Q的横坐标为t,△AQC的面积为S,求S与t的函数关系式,并求出S的最大值;
②连接BQ交AC于点D,连接BC,以BD为直径作⊙I,分别交BC、AB于点E、F,连接EF,求线段EF的最小值,并直接写出此时点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一年一度的国家学生体质测试中,金星中学对全校2000名男生的1000m测试成绩进行了抽查,学校从初三年级抽取了一部分男生的成绩,并绘制成统计表,绘制成频数直方图.
序号 | 范围(单位:秒) | 频数 | 频率 |
1 | 170<x≤200 | 5 | 0.1 |
2 | 200<x≤230 | 13 | a |
3 | 230<x≤260 | 15 | 0.3 |
4 | 260<x≤290 | c | d |
5 | 290<x≤320 | 5 | 0.1 |
6 | 320<x≤350 | 2 | 0.04 |
7 | 350<x≤380 | 2 | 0.04 |
合计 | b | 1.00 |
(1)在这个问题中,总体是什么?
(2)直接写出a,b,c,d的值.
(3)补全频数直方图.
(4)初中毕业生体能测试项目成绩评定标准是男生1000m不超过4′20″(即260秒)为合格,你能估计出该校初中男生的1000m的合格人数吗?如果能,请求出合格的人数;如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知a+b=1,ab=-1.设
(1)计算S2;
(2)请阅读下面计算S3的过程:
=
=
=
∵a+b=1,ab=-1,
∴_______.
你读懂了吗?请你先填空完成(2)中S3的计算结果;再计算S4;
(3)猜想并写出, , 三者之间的数量关系(不要求证明,且n是不小于2的自然数),根据得出的数量关系计算S3.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知x2+(a+3)x+a+1=0是关于x的一元二次方程.
(1)求证:方程总有两个不相等的实数根;
(2)若方程的两个实数根为x1 ,x2 ,且x12+x22=10,求实数a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知a:b:c=2:3:4,且2a+3b﹣2c=10,求a﹣2b+3c的值.
【答案】16.
【解析】试题根据比例的性质可设a=2k,b=3k,c=4k,则利用2a+3b-2c=10得到4k+9k-8k=10,解得k=2,于是可求出a、b、c的值,然后计算a-2b+3c的值.
试题解析:∵a:b:c=2:3:4,
∴设a=2k,b=3k,c=4k,
而2a+3b-2c=10,
∴4k+9k-8k=10,解得k=2,
∴a=4,b=6,c=8,
∴a-2b+3c=4-12+24=16.
考点:比例的性质.
【题型】解答题
【结束】
24
【题目】计算:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(m,3),B(-3,n)两点.
(1)求一次函数的解析式;
(2)观察函数图象,直接写出关于x的不等式>kx+b的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com