分析 先根据等边三角形的性质得出∠A=∠B=60°,再由DE⊥BC交AB于E,DF⊥AC于F得出∠BDE=∠AFD=90°,根据三角形外角的性质求出∠AED的度数,由四边形内角和定理即可得出结论.
解答 解:∵△ABC是等边三角形,
∴∠A=∠B=60°.
∵DE⊥BC交AB于E,DF⊥AC于F,
∴∠BDE=∠AFD=90°.
∵∠AED是△BDE的外角,
∴∠AED=∠B+∠BDE=60°+90°=150°,
∴∠EDF=180°-∠A-∠AED-∠AFD=360°-60°-150°-90°=60°.
故答案为:60°.
点评 本题考查的是等边三角形,三角形内角和定理及直角三角形的性质,熟练掌握等边三角形的性质是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (8+t)℃ | B. | (8-t)℃ | C. | (t-8)℃ | D. | (-t-8)℃ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{3\sqrt{13}}{13}$ | C. | $\frac{2}{3}$ | D. | $\frac{2\sqrt{13}}{13}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x>$\frac{1}{2}$ | B. | $\frac{1}{2}$≤x<5 | C. | $\frac{1}{2}$<x<7 | D. | $\frac{1}{2}$<x≤7 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com