精英家教网 > 初中数学 > 题目详情
13.请从以下两小题中任选一个作答,若多选,则按所选的第一题计分
A.边长2cm的正六边形的边心距是$\sqrt{3}$cm
B.小明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°,(不考虑身高因素),则此塔高约为182米(用科学计算器计算,结果保留整数)

分析 A.过点O作OM⊥AB与M,连接OB,先求出BM,再根据tan∠BOM=$\frac{BM}{OM}$,得出OM=$\frac{BM}{tan∠BOM}$,最后代入计算即可;
B.根据tan∠CAB=$\frac{BC}{AB}$,BC=tan∠CAB×AB,再代入计算即可.

解答 解:A.如图:过点O作OM⊥AB与M,连接OB,
∵AB=2cm,
∴BM=$\frac{1}{2}$AB=1cm,
∵tan∠BOM=$\frac{BM}{OM}$,∠BOM=30°,
∴OM=$\frac{BM}{tan∠BOM}$=$\frac{1}{tan30°}$=$\sqrt{3}$(cm),
故答案为:$\sqrt{3}$;
B.∵tan∠CAB=$\frac{BC}{AB}$,AB=500,∠CAB=20°,
∴BC=tan20°×500≈0.3640×500=182;
故答案为;182.

点评 本题考查了解直角三角形,用到的知识点是仰角的定义、正六边形的性质、特殊角的三角函数值等,要求学生能借助仰角构造直角三角形并解直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.写出一个函数y=kx(k≠0),使它的图象与反比例函数$y=\frac{1}{x}$的图象有公共点,这个函数的解析式为y=x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于点D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹);
(2)判断直线BC与⊙O的位置关系,并说明理由;
(3)若(1)中的⊙O与边AB的另一个交点为E,AB=6,BD=2$\sqrt{3}$,求弧DE的弧长(结果保留根号和π)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.直线y=kx(k>0)与双曲线y=$\frac{2}{x}$交于A,B两点,若A,B两点的坐标分别为A(x1,y1),B(x2,y2),则(x1-x2)(y1-y2)的值为(  )
A.-4B.0C.4D.8

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,直线a∥b,直线a⊥c,若∠1=70°,则∠2=(  )
A.70°B.90°C.20°D.80°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.某商店用2400元钱,购进A、B两种商品,A商品和B商品各花费1200元.已知A商品每件进价比B商品每件的进价少10元,用1200元钱购进A商品的件数比用1200元钱购进B商品的件数多20件.
(1)求商店购进A、B两种商品每件各需多少元?
(2)如果A商品的售价为每件40元,B商品的售价为每件55元,商店把购进的商品全部售出后,用获得的利润再次进货,那么在钱全部用尽的情况下该商店共有几种进货方案?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解不等式组:
(1)$\left\{\begin{array}{l}{x-3(x-2)≤8}\\{5-x>2x}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{1-2(x-1)≤5}\\{\frac{3x-2}{2}<x+\frac{1}{2}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知y关于x的函数y=(m+$\frac{1}{2}$)(n-1)x|n|+m2-$\frac{1}{4}$是正比例函数.
(1)求m,n的值;
(2)画出它的图象;
(3)写出它的一条性质.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.(1)不画图象仅从函数解析式,判断直线y=3x与y=3x-1的位置关系是平行,直线y=3x向下平移4个单位就可以得到y=3x-4;
(2)不画图象仅从函数解析式,判断直线y=$\frac{3}{5}$x-4与y=$\frac{3}{5}$x+4的位置关系是平行,直线y=$\frac{3}{5}$x-4向上平移8个单位就可以得到y=$\frac{3}{5}$x+4.

查看答案和解析>>

同步练习册答案