【题目】如图,已知□ABCD的对角线AC、BD交于O,且∠1=∠2.
(1)求证:□ABCD是菱形;
(2)F为AD上一点,连结BF交AC于E,且AE=AF.求证:AO=(AF+AB).
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:(1)利用平行线的性质以及等角对等边即可证得AB=BC,则依据菱形的定义即可判断;
(2)首先证明△BCE是等腰三角形,然后依据平行四边形的对角线互相平分即可证得.
试题解析:(1)∵ABCD中,AD∥BC,
∴∠2=∠ACB,
又∵∠1=∠2,
∴∠1=∠ACB
∴AB=BC,
∴ABCD是菱形;
(2)∵ABCD中,AD∥BC,
∴∠AFE=∠EBC,
又∵AF=AE,
∴∠AFE=∠AEF=∠BEC,
∴∠EBC=∠BEC,
∴BC=CE,
∴AC=AE+CE=AF+BC=2OA,
∴OA=(AF+BC),
又∵AB=BC,
∴OA=(AF+AB).
科目:初中数学 来源: 题型:
【题目】把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为( )
A. y=2(x+3)2+4 B. y=2(x+3)2﹣4 C. y=2(x﹣3)2﹣4 D. y=2(x﹣3)2+4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,AB=CB,BO⊥AC,DA平分∠BAC,DE⊥AC,连接EF,下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是( )
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=a(x+2)2-3与y2=(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:
①无论x取何值,y2的值总是正数;
②a=1;
③当x=0时,y2-y1=4;
④2AB=3AC;
其中正确结论是( )
A.①② B.②③ C.③④ D.①④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com