精英家教网 > 初中数学 > 题目详情
14.如图所示图形中,是轴对称图形的个数为(  )
A.1个B.2个C.3个D.4个

分析 根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.

解答 解:第一、三、四个图形都是轴对称图形,第二个图形不是轴对称图形,
故选:C.

点评 此题主要考查了轴对称图形定义,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图1,在正方形ABCD中,点E为边BC上一点,将△ABE沿AE翻折得△AHE,延长EH交边CD于F,连接AF.
(1)求证:∠EAF=45°;
(2)若AB=4,F为CD的中点,求tan∠BAE的值;
(3)如图2,射线AE、AF分别交正方形两个外角的平分线于M、N,连接MN,若以BM、DN、MN为三边围成三角形,试猜想三角形的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.我国很多城市水资源缺乏,为了增强居民的节水意识,某市制定了每月用水18立方米以内(不含18立方米)和用水18立方米及以上两种收费标准(收费标准指每立方米水的价格),某用户每月应交水费y(元)是用水量x(立方米)的函数,其函数图象如图所示.
(1)根据图象,求出y关于x的函数表达式.
(2)求自来水公司在这两个用水范围内的收费标准.
(3)若该用户计划某个月水费不超过51.6元,则这个月最多可用多少立方米水?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在平面直角坐标系中,已知矩形ABCD的两个顶点B和C在x轴上,OB=OC,AB=2BC=4.若一条抛物线的顶点为A,且过点C,动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动,点P,Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.
(1)求出点A的坐标,并求出抛物线的解析式;
(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积S最大?最大值为多少?
(3)在动点P,Q运动的过程中,是否存在点M,使以C,Q,E,M为顶点的四边形为菱形?若存在,求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,抛物线y=-x2+bx+c交x轴于A(1,0),B(5,0)两点,顶点为D,直线y=-$\frac{1}{2}$x+3交x轴、y轴于点E、F,交抛物线于M、N两点.
(1)抛物线的解析式为y=-x2+6x-5;点D的坐标为(3,4);
(2)点P为直线MN上方的抛物线上的点,当△PMN的面积最大时,求点P的坐标;
(3)在抛物线上是否存在点Q,使点Q关于直线EF的对称点在x轴上?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在6×4的正方形方格中,△ABC的顶点A、B、C在单位正方形的格点上.请按要求画图:
(1)以点B为位似中心,在方格内将△ABC放大为原来的2倍,得到△EBD,且点D、E都在单位正方形的顶点上.
(2)在方格中作一个△FGH,使△FGH∽△ABC,且相似比为$\sqrt{2}:1$,点F、G、H都在单位正方形的顶点上.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在平面直角坐标系中,已知点C(0,4),点A、B在x轴上,并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.

(1)求抛物线的函数表达式;
(2)在抛物线上是否存在点P,使得△ACP是以AC为底边的等腰三角形?若存在,求出点P的坐标;若不存在,说明理由;
(3)点Q为线段AC上一点,若四边形OCPQ为平行四边形,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.以下图形中一定属于互相放缩关系的是(  )
A.斜边长分别是10和5的两直角三角形
B.腰长分别是10和5的两等腰三角形
C.边长分别是10和5的两个菱形
D.边长分别是10和5的两个正方形

查看答案和解析>>

同步练习册答案