分析 (1)由翻折性质得出∠ABE=∠AHE=90°,AB=AH,∠BAE=∠EAH,由正方形的性质得出AB=AH=AD,由HL证明Rt△AHF≌Rt△ADF,得出∠HAF=∠DAF,即可得出结论;?
(2)设BE的长x,则EF=x+2,EC=4-x,CF=2,由勾股定理得出方程,解方程求出BE,由三角函数的定义即可得出结果;
(3)过点A作AH⊥AN,并截取AH=AN,连接BH、HM,则∠HAN=90°,由正方形的性质得出AB=AD,∠BAD=∠ABC=∠ADC=90°,证出∠HAB=∠NAD,∠PBM=∠CDN=45°,∠ADN=135°,由SAS证明△ABH≌△ADN,得出BH=DN,AH=AN,∠ABH=∠ADN=135°,∠BAH=∠DAN,证出∠HBM=90°,由勾股定理得出BM2+BH2=HM2,由SAS证明△AMH≌△AMN,得出HM=MN,因此BM2+BH2=MN2,即可得出结论.
解答 (1)证明:∵将△ABE沿AE翻折得△AHE,
∴∠ABE=∠AHE=90°,AB=AH,∠BAE=∠EAH,
∵四边形ABCD是正方形,
∴AB=AH=AD
在Rt△AHF和Rt△ADF中,$\left\{\begin{array}{l}{AH=AD}\\{AF=AF}\end{array}\right.$,
∴Rt△AHF≌Rt△ADF(HL),
∴∠HAF=∠DAF,
∴∠EAF=∠HAF+∠EAH=$\frac{1}{2}$∠BAD=$\frac{1}{2}$×90°=45°;?
(2)解:∵BE=EH,HF=FD,
∵AB=4,F为CD的中点,
∴HF=FD=2,设BE的长x,
在Rt△CEF中,EF=x+2,EC=4-x,CF=2,
由勾股定理得:EF2=EC2+CF2,
∴(x+2)2=(4-x)2+22,
解得:x=$\frac{4}{3}$,
∴tan∠BAE=$\frac{BE}{AB}$=$\frac{\frac{4}{3}}{4}$=$\frac{1}{3}$;
(3)解:以BM、DN、MN为三边围成三角形的三角形是直角三角形.理由如下:
过点A作AH⊥AN,并截取AH=AN,连接BH、HM,如图所示:![]()
则∠HAN=90°,
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=∠ABC=∠ADC=90°,
∴∠PBC=∠CDQ=90°,∠HAB=∠NAD,
∵射线AE、AF分别交正方形两个外角的平分线于M、N,
∴∠PBM=∠CDN=45°,
∴∠ADN=90°+45°=135°,
在△ABH和△ADN中,$\left\{\begin{array}{l}{AH=AN}&{\;}\\{∠HAB=∠NAD}&{\;}\\{AB=AD}&{\;}\end{array}\right.$,
∴△ABH≌△ADN(SAS),
∴BH=DN,AH=AN,∠ABH=∠ADN=135°,∠BAH=∠DAN,
∴∠HBP=180°-135°=45°,
∴∠HBM=45°+45°=90°,
∴BM2+BH2=HM2,
∵∠MAN=45°,∠HAM=90°,
∴∠HAM=45°=∠MAN,
在△AMH和△AMN中,$\left\{\begin{array}{l}{AH=AN}&{\;}\\{∠HAM=∠MAN}&{\;}\\{AM=AM}&{\;}\end{array}\right.$,
∴△AMH≌△AMN(SAS),
∴HM=MN,
∴BM2+BH2=MN2,
∴以BM、DN、MN为三边围成三角形的三角形是直角三角形.
点评 本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、三角函数、勾股定理、勾股定理的逆定理等知识;本题综合性强,难度较大,特别是(3)中,需要通过作辅助线构造三角形全等得出直角三角形,运用勾股定理和勾股定理的逆定理才能得出结论.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com