分析 根据O是△ABC的内心和三角形内角和定理,求出∠ABC+∠ACB的度数,进而可求得∠OBC、∠OCB的度数;在△OBC中,即可求出∠BOC的度数;
由切线长定理知:CE=CD;且OC平分∠ECD,根据等腰三角形三线合一的性质可得出OC垂直平分DE,同理可求得OB也垂直DF,因此∠BOC和∠FDE互补,由此可求得∠FDE的度数,再根据圆内接四边形的特点即可得出∠EPF的度数.
解答
解:连接ED和FD,
∵O是△ABC的内心,
∴OB、OC是∠ABC、∠ACB的角平分线;
∴∠OBC+∠OCB=$\frac{1}{2}$(∠ABC+∠ACB)=$\frac{1}{2}$(180°-70°)=55°;
∴∠BOC=180°-55°=125°.
∵CA、CB分别切⊙O于E、D,
∴CE=CD;又OC平分∠BCA,
∴OC⊥DE;
同理可得:OB⊥DF;
∴∠FDE=180°-∠BOC=55°,
∴∠EPF=180°-55°=125°.
点评 本题考查的是三角形内切圆和内心、圆周角定理、切线的性质和圆内接四边形的综合运用,掌握三角形的内心是三角形三条角平分线的交点和圆周角定理是解题的关键,注意所学知识的综合运用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com