精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.

(1)求证:CE=CF;

(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?

【答案】(1)证明见解析(2)GE=BE+GD成立

【解析】试题分析:(1)由DF=BE,四边形ABCD为正方形可证CEB≌△CFD,从而证出CE=CF;

(2)由(1)得CE=CF,BCE+ECD=DCF+ECD,即∠ECF=BCD=90°,又∠GCE=45°,所以可得∠GCE=GCF,故可证得ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.

试题解析:(1)∵在正方形ABCD,BC=CD,B=CDF,BE=DF,

∴△CBE≌△CDF(SAS)

CE=CF.

(2)GE=BE+GD成立.

理由:由(1),CBE≌△CDF,

∴∠BCE=DCF,

∴∠BCE+ECD=DCF+ECD,即∠BCD=ECF=90°,

又∵∠GCE=45°,

∴∠GCF=GCE=45°,

CE=CF,GCE=GCF,GC=GC,

∴△ECG≌△FCG(SAS),

GE=GF,

GE=DF+GD=BE+GD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物元().

(1)请用含的代数式分别表示顾客在两家超市购物所付的费用;

(2)李明准备购买500元的商品,你认为他应该去哪家超市?请说明理由;

(3)计算一下,李明购买多少元的商品时,到两家超市购物所付的费用一样?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图17-Z-12所示等腰三角形ABC的底边长为8 cm,腰长为5 cm,一动点P在底边上从点B向点C0.25 cm/s的速度移动请你探究:当点P运动几秒时P与顶点A的连线AP与腰垂直?

17-Z-12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,AD∥BC,∠C=90°,AD=5,BC=9,以A为中心将腰AB顺时针旋转90°至AE,连接DE,则△ADE的面积等于(  )

A.10
B.11
C.12
D.13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知图甲是一个长为2m,宽为2n的长方形,沿图甲中虚线用剪刀均匀分成四小块长方形,然后按图乙的形状拼成一个正方形.

(1)图乙中阴影部分正方形的边长为   (用含字母m,n的整式表示).

(2)请用两种不同的方法求图乙中阴影部分的面积.

方法一:   

方法二:   

(3)观察图乙,并结合(2)中的结论,你能写出下列三个整式:(m+n)2,(m﹣n)2,mn之间的等量关系吗?

(4)根据(3)题中的等量关系,解决如下问题:若a+b=9,ab=5,求(a﹣b)2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察图,由点A和点B可确定   条直线;

观察图,由不在同一直线上的三点A、BC最多能确定   条直线;

(1)动手画一画图中经过A、B、C、D四点的所有直线,最多共可作   条直线;

(2)在同一平面内任三点不在同一直线的五个点最多能确定   条直线、n个点(n≥2)最多能确定   条直线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是(  )

A. OE=DC B. OA=OC C. ∠BOE=∠OBA D. ∠OBE=∠OCE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AB6AD10BAD的平分线交BC于点EDC的延长线于点FBGAE垂足为GAG2.5△CEF的周长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某人共收集邮票若干张,其中2000年以前的国内外发行的邮票,2001年国内发行的,2002年国内发行的,此外尚有不足100张的国外邮票.求该人共有多少张邮票.

查看答案和解析>>

同步练习册答案