【题目】如图,在平面直角坐标系xoy中,直线与x轴交于点A,与y轴交于点B.动点P、Q分别从O、B同时出发,其中点P以每秒4个单位的速度沿OB向终点B运动,点Q以每秒5个单位的速度沿BA向终点A运动.设运动时间为t秒.
(1)连结PQ,若△AOB和以B、P、Q为顶点的三角形相似,求t的值;
(2)连结AP、OQ,若AP⊥OQ,求t的值;
(3)试证明:PQ的中点在△AOB的一条中位线上.
【答案】(1)当t=1或t=时,△AOB和以B、P、Q为顶点的三角形相似;(2)t=;(3)见解析.
【解析】
(1)根据一次函数解析式求出A、B坐标,得到OA、OB的值,然后分情况讨论:①当时,△BPQ∽△BOA;②当时,△BPQ∽△BAO,根据比例式,分别代入数据求出t值即可;
(2)过点Q作QC⊥y轴,垂足为C,根据△BCQ∽△BOA可求出CQ=3t,CO=8-4t,然后根据AP⊥OQ利用同角的余角相等证明∠CQO=∠APO,进而得到△AOP∽△OCQ,根据相似三角形的性质列出比例式求解即可;
(3)首先求出P(0,4t)、Q(3t,8-4t),可得PQ中点的坐标为(,4),由△AOB的一条中位线所在直线为y=4可得结论.
解:(1)令y=0,则,
解得:x=6,
∴A(6,0),则OA=6,
令x=0,则y=8,
∴B(0,8),则OB=8,
∵∠AOB=90°
∴AB=,
由已知得OP=4t,BQ=5t,
∴BP=8-4t,
∵∠OBA=∠PBQ,
∴分两种情况讨论
①当时,△BPQ∽△BOA,
∴,解得t=1;
②当时,△BPQ∽△BAO,
∴,解得t=,
综上所述,当t=1或t=时,△AOB和以B、P、Q为顶点的三角形相似;
(2)过点Q作QC⊥y轴,垂足为C,
则CQ//OA,
∴△BCQ∽△BOA,
∴,
∴,
解得:BC=4t,CQ=3t,
∴CO=8-4t,
∵∠QCO=90°,
∴∠CQO+∠COQ=90°,
∵AP⊥OQ,
∴∠COQ+∠APO=90°,
∴∠CQO=∠APO,
∴△AOP∽△OCQ ,
∴,
∴
解得t=;
(3)由(2)得BC=4t,CQ=3t,OC=8-4t,
∴P(0,4t)、Q(3t,8-4t),
∴PQ中点的坐标为(,4),
∵△AOB的一条中位线所在直线为y=4,
∴PQ的中点在△AOB的一条中位线上.
科目:初中数学 来源: 题型:
【题目】(10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,半圆O是一个量角器,△AOB为一纸片,点A在半圆上,边AB与半圆相交于点D,边OB与半圆相交于点C,若点C、D、A在量角器上对应读数分别为40°,70°,150°,则∠B的度数是( )
A. 20°B. 25°C. 30°D. 35°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y= x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).
(1)求抛物线的解析式;
(2)判断△ABC的形状,证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出向下平移4个单位长度得到的△A1B1C1,点C1的坐标是___________;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1, △A2B2C2的面积为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+4ax+c的最大值为4,且图象过点(﹣3,0).
(1)求二次函数解析式;
(2)若将该二次函数的图象绕着原点旋转180°,请直接写出旋转后图象的函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),S与t之间的函数关系如图所示.下列说法中正确的有( )
①A、B两地相距60千米;
②出发1小时,货车与小汽车相遇;
③小汽车的速度是货车速度的2倍;
④出发1.5小时,小汽车比货车多行驶了60千米.
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将等腰△ABC沿DE折叠,使顶角顶点A落在其底角平分线的交点F处,若BF=DF,则∠C的度数为( )
A. 60°B. 72°C. 75°D. 80°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:
当点A位于 时,线段AC的长取得最大值,且最大值为 (用含a,b的式子表示)
(2)应用:点A为线段BC外一动点,且BC=4,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.
①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.
(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(6,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com