精英家教网 > 初中数学 > 题目详情

【题目】(1)发现:如图1,点A为线段BC外一动点,且BCaABb.填空:

当点A位于   时,线段AC的长取得最大值,且最大值为   (用含ab的式子表示)

(2)应用:点A为线段BC外一动点,且BC4AB1,如图2所示,分别以ABAC为边,作等边三角形ABD和等边三角形ACE,连接CDBE

请找出图中与BE相等的线段,并说明理由;直接写出线段BE长的最大值.

(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(20),点B的坐标为(60),点P为线段AB外一动点,且PA2PMPB,∠BPM90°,请直接写出线段AM长的最大值及此时点P的坐标.

【答案】(1)CB的延长线上, a+b(2)①CDBE,理由见解析;②BE长的最大值为5(3)满足条件的点P坐标(2)(2,﹣)AM的最大值为2+4

【解析】

1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2根据已知条件易证△CAD≌△EAB,根据全等三角形的性质即可得CDBE由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PNPA2BNAM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+4;如图2,过PPEx轴于E,根据等腰直角三角形的性质即可求得点P的坐标.如图3中,根据对称性可知当点P在第四象限时也满足条件,由此求得符合条件的P另一个的坐标

(1)∵点A为线段BC外一动点,且BCaABb

∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+ABa+b

故答案为:CB的延长线上,a+b

(2)①CDBE

理由:∵△ABD与△ACE是等边三角形,

ADABACAE,∠BAD=∠CAE60°,

∴∠BAD+BAC=∠CAE+BAC

即∠CAD=∠EAB

在△CAD与△EAB中,

∴△CAD≌△EAB(SAS)

CDBE

∵线段BE长的最大值=线段CD的最大值,

(1)知,当线段CD的长取得最大值时,点DCB的延长线上,

∴最大值为BD+BCAB+BC5

(3)如图1

∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN

则△APN是等腰直角三角形,

PNPA2BNAM

A的坐标为(20),点B的坐标为(60)

OA2OB6

AB4

∴线段AM长的最大值=线段BN长的最大值,

∴当N在线段BA的延长线时,线段BN取得最大值,

最大值=AB+AN

ANAP2

∴最大值为2+4

如图2

PPEx轴于E

∵△APN是等腰直角三角形,

PEAE

OEBOABAE642

P(2)

如图3中,

根据对称性可知当点P在第四象限时,P(2,﹣)时,也满足条件.

综上所述,满足条件的点P坐标(2)(2,﹣)AM的最大值为2+4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xoy中,直线x轴交于点A,与y轴交于点B.动点PQ分别从OB同时出发,其中点P以每秒4个单位的速度沿OB向终点B运动,Q以每秒5个单位的速度沿BA向终点A运动.设运动时间为t.

(1)连结PQ,若△AOB和以BPQ为顶点的三角形相似,求t的值;

(2)连结APOQ,若APOQ,求t的值;

(3)试证明:PQ的中点在△AOB的一条中位线上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

已知实数mn满足(2m2n21)(2m2n21)80,试求2m2n2的值.

解:设2m2n2t,则原方程变为(t1)(t1)80,整理得t2180t281

所以t=土9,因为2m2n20,所以2m2n29.

上面这种方法称为换元法,把其中某些部分看成一个整休,并用新字母代替(即换元),则能使复杂的问题简单化.

根据以上阅读材料内容,解决下列问题,并写出解答过程.

1)已知实数xy,满足(2x22y23)(2x22y23)27,求x2y2的值.

2)已知RtACB的三边为abcc为斜边),其中ab满足(a2b2)(a2b24)5,求RtACB外接圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,以点M(0,)为圆心,长为半径作Mx轴于A.B两点,交y轴于C.D两点,连接AM并延长交MP点,连接PCx轴于E.

(1)求点C.P的坐标;

(2)求证:BE=2OE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BA=BC,以AB为直径的⊙O分别交ACBC于点DEBC的延长线与⊙O的切线AF交于点F

(1)求证:∠ABC=2CAF

(2)若AC=2CEEB=1:4,求CEAF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCO是平行四边形,OA=2,AB=6,点Cx轴的负半轴上,将平行四边形 ABCO绕点A逆时针旋转得到平行四边形ADEF,AD经过点O,点F恰好落在x轴的正半轴上.若点D在反比例函数y=(x0)的图象上,则k的值为(  )

A.4B.12C.8D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD,B+D=180°,对角线AC平分∠BAD

(1)如图1,若∠DAB=120°,且∠B=90°,易证AD+BAAC

(2)如图2,若将(1)中的条件B=90°”去掉,(1)中的结论是否成立?请说明理由.

(3)如图3,若∠DAB=90°,探究边ADAB与对角线AC的数量关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,抛物线yax2+bx+3与坐标轴分别交于点AB(﹣30),C10),点P是线段AB上方抛物线上的一个动点.

1)求抛物线解析式;

2)当点P运动到什么位置时,△PAB的面积最大?

3)过点Px轴的垂线,交线段AB于点D,再过点PPEx轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】4分)如图,抛物线的对称轴是.且过点(0),有下列结论:abc0a﹣2b+4c=025a﹣10b+4c=03b+2c0a﹣b≥mam﹣b);其中所有正确的结论是 .(填写正确结论的序号)

查看答案和解析>>

同步练习册答案