【题目】(2011贵州安顺,24,10分)某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集.
⑴求每件T恤和每本影集的价格分别为多少元?
⑵有几种购买T恤和影集的方案?
科目:初中数学 来源: 题型:
【题目】如图,在正方形中,对角线,相较于点,以为边向外作等边,连接,交于.
(1)如图1,若,求的长
(2)如图2,点为的延长线上一点,连接,连接且平分.求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,设坐标轴的单位长度为1cm,整数点P从原点O出发,速度为1cm/s,且点P只能向上或向右运动,请回答下列问题:
(1)填表:
(2)当P点从点O出发10秒,可得到的整数点的个数是 个.
(3)当P点从点O出发 秒时,可得到整数点(10 ,5).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列解题过程的空白处填上适当的推理理由或数学表达式:
如图,在△ABC中,已知∠ADE=∠B,∠1=∠2,FG⊥AB于点G.
求证:CD⊥AB.
证明:∵∠ADE=∠B(已知),
∴DE∥BC( ① ),
∵ DE∥BC(已证),
∴ ② ( ③ ),
又∵∠1=∠2(已知),
∴ ④ ( ⑤ ),
∴CD∥FG(同位角相等,两直线平行),
∴∠CDB=∠FGB(两直线平行,同位角相等),
∵ FG⊥AB(已知),
∴∠FGB=90°(垂直的定义).
∴∠CDB=90°
∴CD⊥AB(垂直的定义).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若x满足,求的值.
解:设,,则,,
所以== ==32-2×2=5.
请运用上面的方法求解下面的问题:
(1)若满足,求 的值;
(2)已知正方形ABCD的边长为,E、F分别是AD、DC上的点,且AE=1,CF=3,长方形EMFD的面积是35,求长方形EMFD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)(5mn2﹣4m2n)(﹣2mn); (2)(a+b)2﹣a(a+2b);
(3)(2a﹣1)(2a+1)﹣a(4a﹣3); (4)﹣14+(2020﹣π)0﹣(﹣)﹣2;
(5)利用乘法公式简便计算:20202-2019×2021;
(6)先化简,再求值:[(5m﹣3n)(m+4n)﹣5m(m+4n)]÷(-3n),其中m=2,n=﹣1.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽取了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:
请你根据图中的信息,解答下列问题:
(1)写出扇形图中______,并补全条形图;
(2)样本数据的平均数是______,众数是______,中位数是______;
(3)该区体育中考选报引体向上的男生共有1200人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BD为矩形ABCD的对角线,AE⊥BD,垂足为E,tan∠BAE= ,BE=1,点P、Q分别在BD、AD上,连接AP、PQ,则AP+PQ的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次扩展下去,则P2020的坐标为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com