精英家教网 > 初中数学 > 题目详情

【题目】如图,BD为矩形ABCD的对角线,AE⊥BD,垂足为E,tan∠BAE= ,BE=1,点P、Q分别在BD、AD上,连接AP、PQ,则AP+PQ的最小值为

【答案】3
【解析】解:

∵四边形ABCD为矩形,且AE⊥BD,tan∠BAE= ,BE=1,

∴AB=2,AE=

∵tan∠BAE=

∴∠BAE=30°,

∴∠EAD=60°,

∵AE=

∴DE=3,

如图,设A点关于BD的对称点为A′,连接A′D,PA′,

则A′A=2AE=2 ,AD=A′D=2

∴△AA′D是等边三角形,

∵PA=PA′,

∴当A′、P、Q三点在一条线上时,A′P+PQ最小,

又垂线段最短可知当PQ⊥AD时,A′P+PQ最小,

∴AP+PQ=A′P+PQ=A′Q=DE=

所以答案是:

【考点精析】认真审题,首先需要了解轴对称-最短路线问题(已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某服装店购进一批甲、乙两种款型时尚恤衫,甲种款型共用了7800元,乙种款型共用了6400元.甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.

1)甲、乙两种款型的恤衫各购进多少件?

2)商店进价提高50%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批恤衫商店共获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2011贵州安顺,2410分)某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集

求每件T恤和每本影集的价格分别为多少元?

有几种购买T恤和影集的方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),抛物线W1:y=﹣x2+4x与x轴的正半轴交于点B,顶点为A,抛物线W2与W1关于x轴对称,顶点为D.

(1)求抛物线W2的解析式;
(2)将抛物线W2向右平移m个单位,点D的对应点为D′,点B的对应点为B′,则当m为何值时,四边形AOD′B′为矩形?请直接写出m的值.
(3)在(2)的条件下,将△AOD′沿x轴的正方向向右平移n个单位(0<n<5),得到△A′O′D′′,AD′分别与O′A′、O′D′′交于点M、点P,A′D′′分别与AB′、B′D′交于点N、点Q.
①求当n为何值时,四边形MNQP为菱形?
②若四边形MNQP的面积为S,求S关于n的函数关系式;并求当n为何值时,S的值最大?最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校准备购进一批篮球和足球,买1个篮球和2个足球共需170元,买2个篮球和1个足球共需190元.

1)求一个篮球和一个足球的售价各是多少元?

2)学校欲购进篮球和足球共100个,且足球数量不多于篮球数量的2倍,求出最多购买足球多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD中,对角线AC和BD相交于点O,如果AC=12、BD=10、AB=m,那么m的取值范围是(  )

A. 1<m<11 B. 2<m<22 C. 10<m<12 D. 5<m<6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:

1+2+22+23+24+…+22020的值.

解:设S1+2+22+23+24+…+22020,将等式两边同时乘以2得,

2S2+22+23+24+25+…+22021

将下式减去上式,得2SS220211,即S220211

1+2+22+23+24+…+22020220211

仿照此法计算:

11+3+32+33+…+320

2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】类比特殊四边形的学习,我们可以定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.
(1)【探索体验】如图1,已知在四边形ABCD中,∠A=40°,∠B=100°,∠C=120°.求证:四边形ABCD是“等对角四边形”.

(2)如图2,若AB=AD=a,CB=CD=b,且a≠b,那么四边形ABCD是“等对角四边形”吗?试说明理由.

(3)【尝试应用】如图3,在边长为6的正方形木板ABEF上裁出“等对角四边形”ABCD,若已经确定DA=4m,∠DAB=60°,是否在正方形ABEF内(包括边上)存在一点C,使四边形ABCD以∠DAB=∠BCD为等对角的四边形的面积最大?若存在,试求出四边形ABCD的最大面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yx2x轴交于点A,以OA为斜边在x轴上方作等腰直角三角形OAB,将OAB沿x轴向右平移,当点B落在直线yx2上时,则OAB平移的距离是_____

查看答案和解析>>

同步练习册答案