精英家教网 > 初中数学 > 题目详情

【题目】如图,在锐角中,的面积为33,点是射线上一动点,以为直径作圆交线段于点,交射线于点,交射线于点.

1)当点在线段上时,若点中点,求的长.

2)连结,若为等腰三角形,求所有满足条件的.

3)将绕点顺时针旋转,当点的对应点恰好落在上时,记的面积为的面积,则的值为__________(直接写出答案即可).

【答案】(1);(2) 2 10;(3) .

【解析】

1)连结,由为直径,得,由面积法解得BE=6,根据勾股定理得CE=8,所以,因为点中点,所以

2)需分类讨论, ,①当时,连结因为,所以 .

②当时,连结,因为,所以,③当时,连结,因为,可证,所以.

(3) 过点CCGAB于点G, 过点EENAB于点N, 过点EEMDP于点M, 过点E′E′HAB于点H,所以NEMD是矩形,根据面积易得CG,因为NEGCE′HCG,所以得三角形相似,对应边成比例即可解答,具体过程见详解.

1)连结,∵为直径,

,∴

∵若点中点,∴

,∴

2)情况1,连结

,∴

情况2,连结

情况3,连结

,∴,∴

3)过点CCGAB于点G, 过点EENAB于点N, 过点EEMDP于点M, 过点E′E′HAB于点H,所以NEMD是矩形,SABC=×AB×CG, ×3×CG=33,解得CG= ,

由(1)得:AE=3,∵NEGC,∴AE:AC=NEGC,即3:11=NE,解得:NE==DM,由勾股定理得AN=

BP是直径,∴∠HDM=E′DE=90°,∠HDE′-E′DM =E′DE-E′DM,即∠HDE′=MDE,又∵DE′=DE,∠DHE′=DME=90°,∴△DHE′≌△DME,HE′=MEDH= DM= 所以 == ,在RtBCG中,由勾股定理得:BG=,E′HCG,∴E′HBH = CGBG,即:E′HBH=:=112,设E′H=11aBH=2a,E′H=11a=EM=ND,∵AN+ND+DH+HB=AB,+11a++2a=3 ,解得:a=,DB=DH+HB=+2a=+2×=AD=AN+ND=AN+HE′=+11a=

ANAD=NEDP, = DP,DP=,∴==

=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,,连结AC,过点C作直线lAB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.

(1)求∠BAC的度数;

(2)当点DAB上方,且CDBP时,求证:PC=AC;

(3)在点P的运动过程中

①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;

②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出BDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校园安全受到全社会的广泛关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:

(1)接受问卷调查的学生共有_______人,扇形统计图中基本了解部分所对应扇形的圆心角为_______°;

(2)请补全条形统计图;

(3)若该中学共有学生1800人,请根据上述调查结果,估计该中学学生中对校园安全知识 达到了解基本了解程度的总人数;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2014年湖南怀化10分)设m是不小于﹣1的实数,使得关于x的方程x2+2m﹣2x+m2﹣3m+3=0有两个不相等的实数根x 1x2

1)若,求的值;

2)求的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点是反比例函数图像上的两点(点在点左侧),过点轴于点,交于点,延长轴于点,已知,则的值为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA, CB于点E,F,点G是AD的中点.求证:GE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中有一直角三角形AOBO为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线yax2+bx+c经过点ABC

(1)求抛物线的解析式;

(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴lx轴交于一点E,连接PE,交CDF,求以CEF为顶点三角形与△COD相似时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边长为20cm,ABC=120°,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点PPQBD,与AC相交于点Q,设运动时间为t秒,0<t<5.

(1)设四边形PQCB的面积为S,求St的关系式;

(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?

(3)直线PNAC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知锐角△ABC,∠ABC45°,ADBCDBEACE,交ADF

1)求证:△BDF≌△ADC

2)若BD4DC3,求线段BE的长度.

查看答案和解析>>

同步练习册答案