精英家教网 > 初中数学 > 题目详情

【题目】如图,如果△ABC与△DEF都是正方形网格中的格点三角形(顶点在格点上),那么SDEF:SABC的值为

【答案】2
【解析】解:如图,设正方形网格的边长为1,由勾股定理得:

DE2=22+22,EF2=22+42

∴DE=2 ,EF=2

同理可求:AC= ,BC=

∵DF=2,AB=2,

=

∴△EDF∽△BAC,

∴SDEF:SABC=DF2:AC2=2,

所以答案是2.

【考点精析】本题主要考查了相似三角形的判定与性质的相关知识点,需要掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,数轴上点AB表示的点分别为-63

1)若数轴上有一点P,它到A和点B的距离相等,则点P对应的数字是________(直接写出答案)

2)在上问的情况下,动点Q从点P出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q点与B点的距离等于 Q点与A点的距离的2倍?若存在,求出点Q运动的时间,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形按如图的方式放置和点,分别在直线x轴上,则点的坐标是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y= +bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C(0,﹣3).

(1)求抛物线的解析式;
(2)D是y轴正半轴上的点,OD=3,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,
①试说明EF是圆的直径;
②判断△AEF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y= +bx﹣ 的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.

(1)b=;点D的坐标:
(2)线段AO上是否存在点P(点P不与A、O重合),使得OE的长为1;
(3)在x轴负半轴上是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(6,c)三点,其中a,b,c满足关系式|a-2|+(b-3)2+=0,

(1)求A.B.C的坐标;

(2)求三角形ABC的面积;

(3)在y轴上是否存在点P,使三角形APC的面积与三角形ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,CE⊥AB于E,BF⊥AC于F,在不添加字母的情况下,找出图中所有的相似三角形,并证明其中一组.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题8) 已知,如图,AC平分∠BADCEABECFADF,且BC=DC

1)求证:BE=DF

2)若AB=5AD=3,求AE的长;

3)若ABC的面积是23ADC面积是18,则BEC的面积等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着互联网技术的广泛应用,“天猫”、“京东”、“唯品会”等网络大型‘:卖场”的日趋完善,网购成了现代人生活的一部分。与此同时,快递行业也随之高速发展.

(1)如果每名快递员每月最多完成快递投递量相同,且每月投递完l2万件快递量需要快递员比投递完12.6万件快递置需要快递员人数少1人,求每名快递员每月最多完成快递投递量是多少万件;

(2)我市某小型快递公司原有员工20名,随着快递投递任务的加大,该快递公司投入部分资金用于改善投递条件,改善后,每人每月投递快递任务量可增加,同时该快递公司又增加了20%的快递员,从而预计每月最大可完成投递快递任务l5.12万件,求的值.

查看答案和解析>>

同步练习册答案