【题目】如图1,抛物线y=﹣x2+bx+c经过点A,B,C,已知点A和C的坐标分别是(﹣4,0)和(0,4),点P在抛物线y=﹣x2+bx+c上.
(1)求抛物线的解析式及顶点D的坐标;
(2)如图2,当点P在线段AC的上方,点P的横坐标记为t,过点P作PM⊥AC于点M,当PM=时,求点P的坐标;
(3)若点E是抛物线对称轴上与点D不重合的一点,F是平面内的一点,当四边形CPEF是正方形时,求点P的坐标.
【答案】(1)y=﹣x2﹣3x+4,(﹣,);(2)(﹣2,16﹣7);(3)点P坐标为(,)
【解析】
(1)根据题意直接将A、C点坐标代入二次函数表达,即可求解;
(2)由题意求出PE==PM=2,即可求解;
(3)根据题意分当CE为正方形一条边、CE为正方形的对角线两种情况,求解即可.
解:(1)将A、C点坐标代入二次函数表达式得:,解得:,
故抛物线的表达式为:y=﹣x2﹣3x+4,
则点D的坐标为(﹣,);
(2)设:直线AC的表达式为:y=kx+4,
将点A坐标代入上式得:0=﹣4k+4,解得:k=1,
则直线AC的表达式为:y=x+4,
过点P作y轴的平行线,交AC于点EM,
∵OA=OC,∴∠CAB=45°,则∠EPM=45°,
∴PE==PM=2,
设:点P坐标为(x,﹣x2﹣3x+4),则点E坐标为(x,x+4),
PE=﹣x2﹣3x+4﹣x﹣4=﹣x2﹣4x=2,
解得:x=﹣2±(舍去﹣2﹣),
则点P的坐标为(﹣2,16﹣7);
(3)当点P′在对称轴左侧时(左侧图),
同①所证,设CH=a,则点P′坐标为(﹣a﹣,4﹣a),
将点P′坐标代入二次函数表达式并解得:a=(负值已舍去),
点P′的坐标为(,),
同理当点P′′在对称轴右侧时(右侧图),
点P″的坐标为(﹣1,)或(,).
备注:本题如果是这样表述:当四边形C,P,E,F是正方形时,求点P的坐标.
则需要考虑:CE为正方形一条边时,
过点E作EG⊥y轴,交y轴于点G,
∠ECG+∠PCG=90°,∠CEG+∠ECG=90°,∴∠CEG=∠PGC,
而∠EGC=∠CPF=90°,EC=PC,∴△ECG≌△CPH,
∴EG=CH=,则点P坐标为(,).
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)点P为线段BC上方抛物线上(不与B、C重合)的一动点,连接PC、PB,当△PBC面积最大时,在y轴找点D,使得PD﹣OD的值最小时,求这个最小值.
(2)如图2,抛物线对称轴与x轴交于点K,与线段BC交于点M,在对称轴上取一点R,使得KR=12(点R在第一象限),连接BR.已知点N为线段BR上一动点,连接MN,将△BMN沿MN翻折到△B'MN.当△B'MN与△BMR重叠部分(如图中的△MNQ)为直角三角形时,直接写出此时点B'的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场以每件20元购进一批衬衫,若以每件40元出售,则每天可售出60件,经调查发现,如果每件衬衫每涨价1元,商场平均每天可少售出2件,若设每件衬衫涨价元,回答下列问题:
(1)该商场每天售出衬衫 件(用含的代数式表示);
(2)求的值为多少时,商场平均每天获利1050元?
(3)该商场平均每天获利 (填“能”或“不能”)达到1250元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小元设计的“过圆上一点作圆的切线”的尺规作图过程.
已知:如图,⊙O及⊙O上一点P.
求作:过点P的⊙O的切线.
作法:如图,
①作射线OP;
②在直线OP外任取一点A,以点A为圆心,AP为半径作⊙A,与射线OP交于另一点B;
③连接并延长BA与⊙A交于点C;
④作直线PC;
则直线PC即为所求.
根据小元设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明:
证明:∵ BC是⊙A的直径,
∴∠BPC=90°(____________)(填推理的依据).
∴OP⊥PC.
又∵OP是⊙O的半径,
∴PC是⊙O的切线(____________)(填推理的依据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以边长为4+4的等边三角形AOB的顶点O为坐标原点,边OA所在直线为x轴建立平面直角坐标系,点B在第一象限,在边OB上有一点P为OB的黄金分割点(PO>PB),那么点P的坐标是__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为( )
A.9B.8C.15D.14.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB表达式为y=﹣2x+2,交x轴于点A,交y轴于点B.若y轴负半轴上有一点C,且CO=AO.
(1)求点C的坐标和直线AC的表达式;
(2)在直线AC上是否存在点D,使以点A、B、D为顶点的三角形与△ABO相似?若存在,请求出点D的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.
(1)若BC=4,求AG的长;
(2)连接BF,求证:AB=FB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正确的结论有:
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com