精英家教网 > 初中数学 > 题目详情

【题目】如图⊙O是△ABC的外接圆,圆心O在这个三角形的高AD上,AB=10,BC=12,求⊙O的半径.

【答案】解:如图,连接OB.

∵AD是△ABC的高.

∴BD= BC=6

在Rt△ABD中,AD= = =8.

设圆的半径是R.

则OD=8﹣R.

在Rt△OBD中,根据勾股定理可以得到:R2=36+(8﹣R)2

解得:R=


【解析】连接OB,根据垂经定理求出BD的长,在Rt△ABD中由勾股定理求得AD=8,设圆的半径是R,则OD=8-R,在Rt△OBD中由勾股定理可求得R的值.解答此题的关键是作出辅助线OB.注意:垂径定理和勾股定理常常在一起中应用.
【考点精析】本题主要考查了勾股定理的概念和垂径定理的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某机械厂甲、乙两个生产车间承担生产同一种零件的任务,甲、乙两车间共有人,甲车间平均每人每天生产零件个.乙车间平均每人每天生产零件个,甲车间每天生产零件总数与乙车间每天生产零件总数之和为个.

1)求甲、乙两车间各有多少人?

2)该机械厂改进了生产技术.在甲、乙两车间总人数不变的情况下,从甲车间调出一部分人到乙车间.调整后甲车间平均每人每天生产零件个,乙车间平均每人每天生产零件个,若甲车间每天生产零件总数与乙车间每天生产零件总数之和不少于个,求从甲车间最多调出多少人到乙车间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一副三角板按如图所示的方式叠放在一起,两直角顶点重合于点O.

(1)求∠AOD+BOC的度数;

(2)AB的中点E恰好落在CD的中垂线上时,求∠AOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县为了落实中央的强基惠民工程计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成若乙队单独施工则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15那么余下的工程由甲队单独完成还需5

1)这项工程的规定时间是多少天?

2)已知甲队每天的施工费用为6500乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.

(1)求证:四边形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),抛物线y=x2﹣2x+k与x轴交于A,B两点,与y轴交于点C(0,﹣3).

(1)k= , 点A的坐标为 , 点B的坐标为


(2)设抛物线y=x2﹣2x+k的顶点为M,求四边形ABMC的面积;
(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;
(4)在抛物线y=x2﹣2x+k上求出点Q坐标,使△BCQ是以BC为直角边的直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知……

(1)请你据此推测出的个位数字是几?

(2)利用上面的结论,求的个位数字.

(3)的个位数字又是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某人去水果批发市场采购猕猴桃,他看中了AB两家猕猴桃.这两家猕猴桃品质一样,零售价都为6元/千克,批发价各不相同,

A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.

B家的规定如下表:

数量范围

(千克)

0500

500以上~1500

1500以上~2500

2500以上

价格(元)

零售价的95%

零售价的85%

零售价的75%

零售价的70%

1)如果他批发600千克猕猴桃,则他在A B两家批发分别需要多少元?

2)如果他批发x千克猕猴桃(1500x2000),请你分别用含x的代数式表示他在AB两家批发所需的费用;

3)现在他要批发1800千克猕猴桃,你能帮助他选择在哪家批发更优惠吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某纸品加工厂利用边角料裁出正方形和长方形两种硬纸片,长方形的宽与正方形的边长相等(如图2),再将它们制作成甲乙两种无盖的长方体小盒(如图1).现将300张长方形硬纸片和150张正方形硬纸片全部用于制作这两种小盒,可以做成甲乙两种小盒各多少个?(注:图1中向上的一面无盖)

查看答案和解析>>

同步练习册答案