【题目】如图,在平面直角坐标系中,等边三角形ABC的顶点B与原点O重合,点C在x轴上,点C坐标为(6,0),等边三角形ABC的三边上有三个动点D、E、F(不考虑与A、B、C重合),点D从A向B运动,点E从B向C运动,点F从C向A运动,三点同时运动,到终点结束,且速度均为1cm/s,设运动的时间为ts,解答下列问题:
(1)求证:如图①,不论t如何变化,△DEF始终为等边三角形.
(2)如图②过点E作EQ∥AB,交AC于点Q,设△AEQ的面积为S,求S与t的函数关系式及t为何值时△AEQ的面积最大?求出这个最大值.
(3)在(2)的条件下,当△AEQ的面积最大时,平面内是否存在一点P,使A、D、Q、P构成的四边形是菱形,若存在请直接写出P坐标,若不存在请说明理由?
【答案】(1)证明见解析;(2)当t=3时,△AEQ的面积最大为cm2;(3)(3,0)或(6,3)或(0,3)
【解析】
(1)由三角形ABC为等边三角形,以及AD=BE=CF,进而得出三角形ADF与三角形CFE与三角形BED全等,利用全等三角形对应边相等得到BF=DF=DE,即可得证;(2)先表示出三角形AEC面积,根据EQ与AB平行,得到三角形CEQ与三角形ABC相似,利用相似三角形面积比等于相似比的平方表示出三角形CEQ面积,进而表示出AEQ面积,利用二次函数的性质求出面积最大值,并求出此时Q的坐标即可;(3)当△AEQ的面积最大时,D、E、F都是中点,分两种情形讨论即 可解决问题;
(1)如图①中,
∵C(6,0),
∴BC=6
在等边三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,
由题意知,当0<t<6时,AD=BE=CF=t,
∴BD=CE=AF=6﹣t,
∴△ADF≌△CFE≌△BED(SAS),
∴EF=DF=DE,
∴△DEF是等边三角形,
∴不论t如何变化,△DEF始终为等边三角形;
(2)如图②中,作AH⊥BC于H,则AH=ABsin60°=3,
∴S△AEC=×3×(6﹣t)=,
∵EQ∥AB,
∴△CEQ∽△ABC,
∴=()2=,即S△CEQ=S△ABC=×9=,
∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,
∵a=﹣<0,
∴抛物线开口向下,有最大值,
∴当t=3时,△AEQ的面积最大为cm2,
(3)如图③中,由(2)知,E点为BC的中点,线段EQ为△ABC的中位线,
当AD为菱形的边时,可得P1(3,0),P3(6,3),
当AD为对角线时,P2(0,3),
综上所述,满足条件的点P坐标为(3,0)或(6,3)或(0,3).
科目:初中数学 来源: 题型:
【题目】某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.
(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?
(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为 4 的等边△ABC 中,点 D 从点A 开始在射线 AB 上运动,速度为 1 个单位/秒,点F 同时从 C 出发,以相同的速度沿射线 BC 方向运动,过点D 作 DE⊥AC,连结 DF 交射线 AC 于点 G
(1)当 DF⊥AB 时,求 t 的值;
(2)当点 D 在线段 AB 上运动时,是否始终有 DG=GF?若成立,请说明理由。
(3)聪明的斯扬同学通过测量发现,当点 D 在线段 AB 上时,EG 的长始终等于 AC 的一半,他想当点D 运动到图 2 的情况时,EG 的长是否发生变化?若改变,说明理由;若不变,求出 EG 的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H.∠CBE=∠BAD,有下列结论:①FD=FE;②AH=2CD;③BCAD=AE2;④S△BEC=S△ADF.其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于给定的函数,自变量取x1,x2时,对应的函数值分别记为y1,y2.自变量取时.对应的函数值记为,例如一次函数y=2x+1,自变量取x1,x2时,对应的函数值分别为y1=2x1+1,y2=2x2+1,自变量取时,对应的函数值为=2+1,若对于给定的函数,自变量取x1,x2(x1≠x2)时,总有,则称函数为凸凸函数.对于给定的函数总有,则称函数为凹凹函数.对于给定的函数总有,则称函数为平平函数.
(1)求证:函数y=2x是平平函数;
(2)判断函数y=ax2是凸凸函数,凹凹函数还是平平函数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(探究)如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示),通过观察比较图2与图1中的阴影部分面积,可以得到乘法公式 .(用含a,b的等式表示)
(应用)请应用这个公式完成下列各题:
(1)已知4m2=12+n2,2m+n=4,则2m﹣n的值为 .
(2)计算:20192﹣2020×2018.
(拓展)计算:1002﹣992+982﹣972+…+42﹣32+22﹣12.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】几何作图时,我们往往依据以下三个步骤:
①画草图分析思路
②设计画图步骤
③回答结论并验证
请你按照以上所述,完成下面的尺规作图:已知三条线段h,m,c,求作△ABC,使其BC边上的高AH=h,中线AD=m,AB=c.
(1)请先画草图(画出一个即可),并叙述简要的作图思路(即实现的大致作图步骤);步骤如下:
(2)完成尺规作图(不要求写作法,作出一个满足条件的三角形即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题探究
(1)如图①,在△ABC 中,∠B=30°,E 是 AB 边上的点,过点 E 作 EF⊥BC 于 F,则的值为 .
(2)如图②,在四边形 ABCD 中,AB=BC=6,∠ABC=60°,对角线 BD 平分∠ABC,点E 是对角线 BD 上一点,求 AE+ BE的最小值.
问题解决
(3)如图③,在平面直角坐标系中,直线 y -x 4 分别于 x 轴,y 轴交于点 A、B,点 P 为直线 AB 上的动点,以 OP 为边在其下方作等腰 Rt△OPQ 且∠POQ=90°.已知点C(0,-4),点 D(3,0)连接 CQ、DQ,那么DQ CQ是否存在最小值,若存在求出其最小值及此时点 P 的坐标,若不存在请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com